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Abstract

| study the informational complexity of active learning in a statistical learning
theory framework. Specifically, | derive bounds on the rates of convergence achiev-
able by active learning, under various noise models and under general conditions
on the hypothesis class. | also study the theoretical advantages of active learning
over passive learning, and develop procedures for transforming passive learning al-
gorithms into active learning algorithms with asymptotically superior label com-

plexity. Finally, | study generalizations of active learning to more general forms of
interactive statistical learning.
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Chapter 1

Notation and Background

1.1 Introduction

In active learning, a learning algorithm is given access to a large pool of unlabeled examples, and
is allowed to request the label of any particular examples from that pool, interactively. The ob-
jective is to learn a function that accurately predicts the labels of new examples, while requesting
as few labels as possible. This contrasts with passive learning, where the examples to be labeled
are chosen randomly. In comparison, active learning can often significantly decrease the work
load of human annotators by more carefully selecting which examples from the unlabeled pool
should be labeled. This is of particular interest for learning tasks where unlabeled examples are
available in abundance, but label information comes only through significant effort or cost.

In the passive learning literature, there are well-known bounds on the rate of convergence

of the loss of an estimator, as a function of the number of labeled examples observed [e.g.,

dl 19 Blumer ef al., 1989, Koltchinskii, 2006, Kulkarni, 1989, Long, 1995,

m,@ﬂ. However, significantly less is presently known about the analogous rate in active
learning: namely, the rate of convergence of the loss of an estimator, as a function of the number
of label requests made by an active learning algorithm.

In this thesis, | will outline some recent progress | have been able to make toward understand-
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ing the achievable rates of convergence by active learninggawith algorithms that achieve
them. | will also describe a few of the many open problems remaining on this topic.

The thesis begins with a brief survey of the history of this topic, along with an introduction
to the formal definitions and notation that will be used throughout the thesis. It then describes
some of my contributions to this area. To begin, Chagter 2 describes some rates of convergence
achievable by active learning algorithms under various noise conditions, as quantified by a new
complexity parameter called tliisagreement coefficienltt then continues by exploring an in-
teresting distinction between two different notions of label complexity: namrelyfiableand
unverifiable This distinction turns out to be extremely important for active learning, and Chap-
ter[3 explains why. Following this, Chapfar 4 describes a reductions-based approach to active
learning, in which the goal is to transform passive learning algorithms into active learning al-
gorithms having strictly superior label complexity. The results in that chapter are surprisingly
general and of deep theoretical significance. The thesis concludes with Hapter 5, which de-
scribes some preliminary work on generalizations of active learning to more general types of
interactive statistical learning, proving results at a higher level of abstraction, so that they can

apply to a variety of interactive learning protocols.

1.2 A Simple Example: Thresholds

We begin with the canonical toy example illustrating the potential benefits of active learning.
Suppose we are tasked with finding, somewhere in the intérvd| a threshold value; we are
scored based on how close our guess is to the true value, so that if wergemsals: for some
z € [0, 1], we are awardedl — | — z| points. There is an oracle at hand who knows the value of
x, and given any point’ € [0, 1] can tell us whethet’ > x orz’ < x.

The passive learning strategy can be simply described as taking points uniformly at random
from the interval0, 1] and asking the oracle whether each pointis or < x for every one. After

a number of these random queries, the passive learning strategy chooses its guess somewhere
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betweenr| = the largest’ that it knows is< x, andzi, = the smallest’ it knows is> x (say
. ,—‘,-:Bl . . . H
it guesses™*2). By a simple argument, if the passive strategy asks abquints, then the

expected distance betweehandz;, is at Ieastn+rl (say forx = 1/2), so we expect the passive
strategy’s guess to be off by some amog%.

On the other hand, suppose instead of asking the oracle about every one of these random
points, we instead look at each one sequentially, and only ask about a point if it is between the
currentz; and the current’; that is, we only ask about a point if it isot greater than a point
2’ known to be> x andnot less than a point known to be z. This certainly seems to be a
reasonable modification to our strategy, since we already know how the oracle would respond
for the points we choose not to ask about. In this case, if we ask the oraclerapomits, each
one reduces the width of the interval, «},] at that moment by some factoy. Thesen factors
B; are upper bounded by independent/niform([1/2,1]) random variables (representing the
fraction of the interval on the larger side of th®, so that the expected final width pf,, 2] is
at most(2)" < exp{—n/4}. Therefore, we expect this modified strategy’s guess to be off by at
most half this amoun.

As we will see, this modified strategy is a special case of an active learning algorithm | will

refer to as CAL (after its discovereis, Cohn, Atlas, and L'(Jn_e_L1994]) or Algorithm 0, which

| introduce in Sectiof_114. The gap between the passive strategy, which can only reduce the
distance between the guess and the true thresholthetza rate)(n '), and the active strategy,
which can reduce this distance atexponentiatate: (2)", can be substantial. For instance, with
n = 20, gy ~ 024 while 3(3)" ~ .0016, better than an order of magnitude improvement.
We will see several cases below where these types of exponential improvements are achievable
by active learning algorithms for much more realistic learning problems, but in many cases the
proofs can be thought of as simple generalizations of this toy example.

10f course, the optimal strategy for this task always asks a@@ﬁi, and thus closes the gap at a rate.

However, the less aggressive strategy | described here illustrates a simple case of an algorithm we will use exten-

sively below.



1.3 Notation

Perhaps the simplest active learning task is binary classification, and we will focus primar-
ily on that task. LetY be aninstance spacecomprising all possible examples we may ever
encounter. C is a set of measurable functios: X — {—1,1}, known as theconcept
spaceor hypothesis classWe also overload this notation so that far € N and a sequence

S = {x1,...,xn} € X™, h(S) = (h(z1), h(xa),...,h(zy)). We denote byl the VC di-

mension ofC, and byC[m| = max I{h(S) : h € C}| the shatter coefficient (a.k.a. growth
S m

function) value atn [Vapnik,1998]. Generally, we will refer to arfy with finite VC dimension

as aVC class D is a known set of probability distributions oki x {—1, 1}, in which there

is some unknownarget distributionDyy. | also denote byD[X'] the marginal ofD over X'.
There is additionally a sequence of examples y1), (x2,¥2), ... sampled i.i.d. according to
Dxy. In the active learning setting, thg values are hidden from the learning algorithm until
requested. Defin&,,, = {(x1,v1), (z2,2), ..., (Tm,ym)}, @ finite sequence consisting of the
first m examples.

For anyh € C and distributiorD’ over X x {—1,1}, leterp/(h) = Px vy~ {h(X) # Y},
and forS = {(«,v1), (25, v5), ..., (z),,y.)} € (X x {—1,1})™, define the empirical error
ers(h) = 5= 5" |h(2}) — yi|. WhenD’ = Dxy (the target distribution), we abbreviate the
former byer(h) = erp,, (h), and whenS = Z,,, we abbreviate the latter by, (h) = erz, (h).
Thenoise rate denoted/(C, Dxy ), is defined a®(C, D) = inf,cc erp(h); we abbreviate this
by » whenC andD = Dy, are clear from the context (i.e., the concept space and target dis-
tribution). We also defing(z; D) = Pp(Y = 1|z), and define th&ayes error rate denoted
B(D), asf(D) = Ex.pix[min{n(X;D),1 — n(X;D)}], which represents the best achievable
error rate byany classifier; we will also refer to the Bayes optimal classifier, denatedie-
fined ashi,(z) = 21[n(x; D) > 1/2] — 1; again, forD = Dx,, we may abbreviate this as
n(z) = n(z; Dxy), B = B(Dxy), andh* = hp,__ .

For concept spack and distributiorD’ over X', for any measurablg : X — {—1,1} and
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anyr > 0, define
B’)ﬁp/(h,?ﬂ) = {h, cH: IPXND/(h(X) §é h,(X)) S T’}.

WhenH = C, D' = Dxy[X], or both are true, we may simply writBp: (h,r), By(h,71),
or B(h,r) respectively. For concept spatéand distributionD’ over X' x {—1, +1}, for any

€ [0, 1], define thec—minimal set H(¢;D') = {h € H : erp/(h) — v(H,D’) < €}. When
D' = Dxy (target distribution) and is clear from the context, we abbreviate this{by =
H(e; Dxy). For a concept spacKH and distributionD’ over X', define thediameterof H as
diam(H; D') = supy, pyen Px~p(h1(X) # he(X)); as before, whe®’ = Dyy [X] and is clear
from the context, we will abbreviate this dgim(H) = diam(H; Dxy[X]).

Also define theegion of disagreemermf a concept spacH as
D[S(H) = {ZIZ’ e X: th,hg € H s.t. hl(flj') 7& hg([lj‘)}

Also, for a concept spad¥, distributionD overX’ x {—1,+1}, € € [0, 1], andm € N, define

theexpected continuity modulas

wy(m, ;D) = Egupm . s}?p |(erp(hy) —ers(hy)) — (erp(hg) — erg(ha))].
1,h2€H:
P U (X)ha (X)) <e

At this point, let us distinguish between some particular settings, distinguished by the defini-
tion of D as one of the following sets of distributions.

e Agnostic = { all D} (the set of all joint distributions oA x {—1, +1}).

e BenignNoise(C) ={D : v(C,D) = 3(D)}.

e Tsybakov(C, Kk, pu) = {D : Ve > 0,diam(C(e;D); D) < ,uei}, (for any finite parameters
k> 1,u>0).

e Entropyy(C, a, p) = {D :¥m € Nande € [0, 1], we(m, ;D) < aekTpm_l/z}, (for any
finite parameters > 0, p € (0,1)).

e UniformNoise(C) ={D :3Ja €[0,1/2),f € Cs.t.Vz € X, Pp(Y # f(2)|X =x) =
at.



e Realizable(C) ={D: 3f € Cs.t.erp(f) = 0}.

® Realizable(C,Dx) = Realizable(C) N {D : D[X]| = Dx}, (for any given marginal

distributionDy over X).

Agnostic is the most general setting we will study, and is referred to asagmostic case
whereD is the set ofall joint distributions. However, at times we will consider the other
sets, which represent various restrictionsAgfnostic. In particular, the seBenignNoise(C)
essentially corresponds to situations in which the lack of a perfect classifiérisndue to

stochasticity of the labels, not model misspecificatiOiybakov(C, k, 11) is a further restric-

tion, introduced by Mammen and Tsybakov [1999] akov [2004], which (informally)

represents those distributions having reasonably low noise near the optimal decision bound-
ary (see Chaptdd 2 for further explanations)ntropy;(C, a, p) represents théinite entropy

with bracketingcondition common to the empirical processes literature [e.g., Koltchinskii, 2006,

van der Vaart and Wellner, 19961niformNoise(C) represents a (rather artificial) subset of

BenignNoise(C) in which every point has the same probability of being labeled opposite to

the optimal Iabelﬂ%ealizablef((ii represents theealizable casgpopularized by the PAC model

of passive learning ian 4], in which there is a perfect classifier in the concept space;
in this setting, we will refer to this perfect classifier as theget function typically denoted

h*. Realizable(C, Dx) represents a restriction of the realizable case, which we will refer to as
thefixed-distribution realizable caséhis corresponds to learning problems where the marginal

distribution overX is knowna priori.

Several of the more restrictive sets above may initially seem unrealistic. However, they
become more plausible when we consider fairly complex concept spaces (e.g., honparametric
spaces). On the other hand, some (specifically; formNoise(C) and Realizable(C, Dx))
are basically toy scenarios, which are only explored as stepping stones toward more realistic

assumptions.
We now define the primary quantities of interest throughout this thesis: namely, rates of
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convergence, and label complexity.

Definition 1.1. (Unverifiable rate) An algorithrod achieves a rate of convergengé-, -) on
expected excess error with respectd for any Dxy andn € N, if h,, = A(n) is the

algorithm’s output after at most label requests, for target distributioR vy, then
E[er(hn)] - I/((C, DXy) S R(n, DXy).

An algorithm.A achieves a rate of convergen&-, -, -) on confidence-bounded excess error
with respect taC if, for anyDxy, § € (0,1), andn € N, if h,, = A(n) is the algorithm’s output

after at most: label requests, for target distributicR xy-, then

P(er(hn) - V(C,ny) S R(n, 5, DXy)) Z 1—0.

Definition 1.2. (Verifiable rate) An algorithmA achieves a rate of convergeng&g-, -, -) on an
accessible bound on excess error with resped tanderD if, foranyDxy € D, 6 € (0, 1),
andn € N, if (h,,, €,) = A(n) is the algorithm’s output after at mostlabel requests, for target

distributionDyy, then

P(er(hn) - V(C,ny) S én S R(n, 5, DXy)) Z 1-—6.

| will refer to Definition[I.2 as averifiable rateunderD, for short. If ever | simply refer to

therate, | will mean DefinitionT.]L. To distinguish these two notions of convergence rates, | may

sometimes refer to Definitidn.1 as theverifiable rateor thetrue rate Clearly any algorithm

that achieves a verifiable rafe also achieves: as an unverifiable rate. However, we will see

interesting cases where the reverse is not true.

At times, it will be necessary to express some results in terms of the number of label requests

required to guarantee a certain error rate. This quantity is referred to ed#ieomplexityand

is defined quite naturally as follows.



Eler(h,)] < e.

Definition 1.3. (Unverifiable label complexity) An algorithpt achieves dabel complexity
A(-, ) for expected error, if for anPxy, Ve € (0,1), Vn > A(e, Dxy), if h, = A(n) is the

algorithm’s output after at most label requests, for target distributioR vy, then

An algorithm.A4 achieves dabel complexityA(-, -, -) for confidence-bounded error, if for any
Dxy, Ve, 6 € (0,1),¥n > A(e, 0, Dxy), if h, = A(n) is the algorithm’s output after at most

label requests, for target distributioR xy, thenP(er(h,) <€) > 1 — 6.

Definition 1.4. (Verifiable label complexity) An algorithpd achieves averifiable label
complexityA(-, -, -) for C underD if it achieves a verifiable rat& with respect taC underD

such that, foranyDyy € D, V§ € (0,1), Ve € (0,1), Vn > A(e, 0, Dxy), R(n,0, Dxy) < €.

Again, to distinguish between these definitions, | may samesirefer to the former as the

unverifiable label complexitgr thetrue label complexity Also, throughout the thesis, | will

maintain the convention that whenever | refer to a “rater “label complexityA,” | refer to the

confidence-bounded variety, and similarly when | refer to a “fater “label complexityA,” in

those cases | refer to the version of the definitionefigpectederror rates.

A brief note on measurability:

Throughout this thesis, we will &£ andP (and indeedany reference to “probability”) refer to

the outer expectation and probabilit

[van der Vaart and Wellher, 1996], so that quantities such

asP(DIS(B(h,r))) are well defined, even ibI1.S(B(h,r)) is not measurable.

1.4 A Simple Algorithm Based on Disagreement

One of the earliest, and most elegant, theoretically sound active learning algorithms for the re-

alizable case was provided

v Cohn, Atlas, and L&

ner

1994]. Under the assumption that there

exists a perfect classifier i@, they proposed an algorithm which processes unlabeled examples

in sequence, and for each one it determines whether there exists a clasSifeynsistent with

all previously observed labels that labels this new exampl@nd one that labels this example

8



—1; if so, the algorithm requests the label, and otherwise it does not request the label j albielr
requests, the algorithm returns any classifier consistent with all observed labels. In some sense,
this algorithm corresponds to the very least we could expect of an active learning algorithm, as
it never requests the label of an example it can derive from known information, but otherwise
makes no effort to search for informative examples. We can equivalently think of this algorithm
as maintaining two setd/ C C is the set of candidate hypotheses still under consideration, and

R = DIS(V) is their region of disagreement. We can then think of the algorithm as request-
ing a random labeled example from the conditional distributio®@f- given thatX € R, and

subsequently removing froii any classifier inconsistent with the observed label.

Most of the active learning algorithms we study in subsequent chapters will be, in some
way, variants of, or extensions to, this basic procedure. In fact, at this writing, all of the pub-
lished general-purpose agnostic active learning algorithms achieving nontrivial improvements

are derivatives of Algorithm 0. A formal definition of the algorithm is given below.

Algorithm O

Input: hypothesis clagy, label budget:
Output: classifieh,, € H and error bound,
0.Vo<—H,q<—0

1. Form=1,2,...

2. If Elhl, hy € V:] s.t hl(flj'm) 7& hg(l‘m),
3 Requesy,,
4. qg—q+1
5
6

Vg —{h € Vomr: h@m) = ym}
If ¢ = n, Return an arbitrary classifiér, € V,, and value,, = diam(V,,)

One of the most appealing properties of this algorithm, leessith simplicity, is the fact that
it makes extremely efficient use of the unlabeled examples; in fact, supposing the algorithm
processes: unlabeled examples before returning, we can take the clagsifi@nd label all of
the examples we skipped over (i.e., those werdittequest the labels of); this actually produces
a set ofm perfectly labeled examples, which we can feed into our favorite passive learning
algorithm, even though we only requested the labels of a subset of those examples. This fact

also provides a simple proof that(h,,) can be bounded by a quantity that decreases to zero (in

9



probability) withn: namely,diam(V;,). However| Cohn et al. [1994] did not provide any further

characterization of the rates achieved by this algorithm in general. For this, we must wait until
ChaptefR, where | provide the first general characterization of the rates achieved by this method

in terms of a quantity | call the disagreement coefficient.

1.5 A Lower Bound

When beginning an investigation into the achievable rates, it is natural to first ask what we can
possibly hope to achieve, and what results are definitely not possible. That is, what are some
fundamental limits on what this type of learning is capable of. This type of question was inves-
tigated by Kulkarni et al. [1993] in a more general setting. Informally, the reasoning is that each
label request can communicate at most one bit of information. So the best we can hope for is
something logarithmic in the “size” of the hypothesis class. Of course, for infinite hypothesis
classes this makes no sense, but with the help of a notiaor size Kulkarni et al. [1993]

were able to prove the analogous result.

Specifically, letN(e) be the size of the smallest sEtof classifiers inC such thatvh €
C,3n e V : Pxplh(X) # W(X)] < ¢, for some distributiorD over X. Then any achievable

label complexity\ has the property that > 0, sup  A(e,0, Dxy ) >1og,[(1-0) N (2€)].
Dxy €Realizable(C,D)

Since we can often get a reasonable estimat& @f by its distribution-free upper bound

2 (%1n k)d [Haussler, 1992], we can often expect our rates to be atbggt-cn/d} for some

€ €

constante. In particular, rather than working with/(e) in the results below, | will typically
formulate upper bounds in terms @f in most of these cases, some variant@f NV (¢) could
easily be substituted to achieve a tighter bound (by using the cover as a hypothesis class instead

of the full space), closer in spirit to this lower bound.
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1.6 Splitting Index

Over the past decade, several special-purpose active learning algorithms were proposed, but

notably lacking was a general theory of convergence rates for active learning. This changed in

2005 when Dasgupta published his theory of splitting indices [Dadgupte, 2005].

As before, this section is restricted to ttealizable caseLet Q C {{hq, ha} : hy,hy € C}
be a finite set of unordered pairs of classifiers fr@émForz € X andy € {—1,+1}, define
QY = {{h1,ha} € Q : hy(z) = ha(x) = y}. Apointz € X is said top-split Q if

I < (1 — .
Jemax Q) < (1= p)lQl
We sayH C Cis(p, A, 7)-splittableif for all finite @ C {{h1,ha} CC:P(hq(X)#ho(X)) > A},
P(X p-splits@) > 7.

A large value of for a reasonably largeindicates that there are highly informative examples

that are not too rare. Dasgupta effectively proves the following results.

Theorem 1.5. For any VC clas<C, for some universal constant> 0, there is an algorithm
with verifiable label complexityk for Realizable(C) such that, for any € (0,1),6 € (0, 1),
andDxy € Realizable(C), if B(h*,4A)is (p, A, 7)-splittable for all A > ¢/2, then
A(€,0,Dxy) < c% log % log %

The valuep has been referred to as tisplitting index It can be useful for Euantifiying

asgupta

the verifiable rates for a variety of problems in the realizable case. For ex

[2005] uses it to analyze the problem whérés the class of homogeneous linear separatods in

dimensions, an@xy [X]| = D is the uniform distribution on the unit-dimensional sphere. He
shows that this problem id /2, ¢, €)-splittable for any > 0 for any target inC. This implies a
verifiable rate fofRealizable(C, D) of

R(n,d,Dxy) x %l - exp {—c’ g}

for a constant’ > 0. This rate was previously known for other algorithms [e.g., Dasgupta et al.,

005], but had not previously been derived as a special case of such a general analysis.

11



1.7 Agnostic Active Learning

Though each of the preceding analyses provides valuable insights into the nature of active learn-
ing, they also suffer the drawback of reliance on the realizability assumption. In particular, that
there is no label noise, and that the Bayes optimal classifierGs are severe and often unreal-

istic assumptions. We would ideally like an analysis of the agnostic case as well. However, the
aforementioned algorithms (e.g., CAL, and the algorithm achieving the splitting index bounds)
no longer function properly in the presence of nonzero noise rates. So we need to start from the
basics and build new techniques that are robust to noise conditions.

To begin, we may again ask what we might hope to achieve. That is, are there fundamental
information-theoretic limits on what we can do with this type of learning? This question was
investigated by Kaariainen [2006]. In particular, he was able to prove that for basically any
nontrivial marginalD over X', noise rates, numbern, and active learning algorithm, there is
some distributiorD xy with marginalD and noise rate such that the algorithm’s achieved rate

R(n, 0, Dxy) atn satisfies (for some constant> 0)

2]
R 5Dsr) 2 o 25010
Furthermore, this result was improved i nl;]_o_m [2009] to
2
R(n,3/4,DXy) >c VTd

Considering that rates %@/5)

are achievable in passive learning, this indicates that,
even for concept spaces that had exponential rates in the realizable case, any bound on the veri-
fiable rates that shows significant improvement (more than a multiplicative factgrpin the
dependence on for nonzero noise rates must dependgy in more than simply the noise

rate.

12



Chapter 2

Rates of Convergence in Active Learning

In this chapter, we study the rates of convergence in generalization error achievable by active
learning under various types of label noise. Additionally, we study the more general problem of
active learning with a nested hierarchy of hypothesis classes, and propose an algorithm whose
error rate provably converges to the best achievable error among classifiers in the hierarchy at a
rate adaptive to both the complexity of the optimal classifier and the noise conditions. In partic-
ular, we state sufficient conditions for these rates to be dramatically faster than those achievable

by passive learning.

2.1 Introduction

There have recently been a series of exciting advances on the topic of active learning with
arbitrary classification noise (the so-callagnosticPAC model), resulting in several new al-

gorithms capable of achieving improved convergence rates compared to passive learning un-

der certain conditions. The first, proposed ' ngford [2006] was

S2

the A% (agnostic active) algorithm, which is provably never significantly worse than passive

learning by empirical risk minimization. This algorithm was later analyzed in more detail

in [Hanneke| 2007b], where it was found that a complexity measure calledighgreement

13



coefficienttharacterizes the worst-case convergence rates achiew¢dfbyany given hypothe-

sis class, data distribution, and best achievable error rate in the class. The next major advance was

byDasgupta, Hsu, and Montel 0|nLL2)O7], who proposed a new algorithm, and proved that it im-

proves the dependence of the convergence rates on the disagreement coefficient comiZared to
Both algorithms are defined below in Sectlon] 2.2. While all of these advances are encouraging,
they are limited in two ways. First, the convergence rates that have been proven for these algo-
rithms typically only improve the dependence on the magnitude of the noise (more precisely, the
noise rate of the hypothesis class), compared to passive learning. Thus, in an asymptotic sense,
for nonzero noise rates these results represent at best a constant factor improvement over passive
learning. Second, these results are limited to learning with a fixed hypothesis class of limited

expressiveness, so that convergence to the Bayes error rate is not always a possibility.

On the first of these limitations, some recent workl by Castro and N clua.lg [2006] on learn-

ing threshold classifiers discovered that if certain parameters of the noise distributioroaue
(namely, parameters related to Tsybakov’s margin conditions), then we can achieve strict im-
provements in the asymptotic convergence rate via a specific active learning algorithm designed
to take advantage of that knowledge for thresholds. That work left open the question of whether
such improvements could be achieved by an algorithm that does not explicitly depend on the
noise conditions (i.e., in thagnosticsetting), and whether this type of improvement is achiev-
able for more general families of hypothesis classes. In a personal communication, John Lang-
ford reported that he and Rui Castro determined such improvements are in fact achieved by
A? for the special case of threshold classifiers. However, there remained an open question of
whether such rate improvements could be generalized to hold for arbitrary hypothesis classes.

In Section ZB, we provide precisely this generalization. We analyze the rates achievéd by

under Tsybakov’s noise conditions [Mammen and Tsybakov, 1999, Tsybakov, 2004]; in par-

ticular, we find that these rates are strictly superior to the known rates for passive learning,

when the disagreement coefficient is small. We also study a novel modification of the algorithm

14



of Dasgupta, Hsu, and Monteleohi [2007], proving that it ioyars upon the rates of? in its
dependence on the disagreement coefficient.

Additionally, in Sectiodl 2}, we address the second limitation by proposing a general model
selection procedure for active learning with an arbitrary structure of nested hypothesis classes.
If the classes each have finite complexity, the error rate for this algorithm converges to the best
achievable error by any classifier in the structure, at a rate that adapts to the noise conditions
and complexity of the optimal classifier. In general, if the structure is constructed to include
arbitrarily good approximations to any classifier, the error converges to the Bayes error rate in
the limit. In particular, if the Bayes optimal classifier is in some class within the structure, the
algorithm performs nearly as well as running an agnostic active learning algorithm on that single

hypothesis class, thus preserving the convergence rate improvements achievable for that class.

2.1.1 Tsybakov’'s Noise Conditions

In this chapter, we will primarily be interested in the s&tgbakov(C, k, 1), for parameter
valuesy > 0 andx > 1. These noise conditions have recently received substantial attention
in the passive learning literature, as they describe situations in which the asymptotic minimax

convergence rate of passive learning is faster than the worst.caSerate [e.g., Koltchinskii,

2006, Mammen and Tsybakov, 1999, Massart &futlie Nedéléd, 2006, Tsybakav, 2004].

This condition is satisfied when, for example,
Ju' >0,k >1st.3h e C: VI € C,er(h) —v > W'P{h(X) # h'(X)}".

As we will see, the case where= 1 is particularly interesting; for instance, this is the case
whenh* € C andP{|n(X) — 1/2] > ¢} = 1 for some constant € (0,1/2). Informally, in

many cases these conditions can often be interpreted in terms of the relation between magnitude
of noise and distance to the decision boundary; that is, since in practice the amount of noise
in an example’s label is often inversely related to the distance from the decision boundary, a

r value of 1 may often result from having low density near the decision boundary (i.e., large
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margin); when this is not the case, the value:a$ essentially determined by how quickjyz)

changes as approaches the decision boundary. See [Castro and Nowak, 2006, Koltchinskii,

2006, Mammen and Tsybakov, 1999, Massart Blutlie Nedéléc, 2006, Tsybakadv, 2004] for

further interpretations of this margin condition.

It is known that when these conditions are satisfied for sere 1 andy. > 0, the passive
learning method of empirical risk minimization achieves a convergence rate guarantee, holding
with probability> 1 — ¢, of

d 1og<n/5)) %1 |

i <
er(arg min erp,(h)) —v<c ( .

wherec is a (= andu -dependent) constant [Koltchinskii, 2006, Mammen and Tsybakov, 1999,

2006]. Furthermore, for some hypothesis classes, this is known to

be a tight bound (up to the log factor) on the minimax convergence rate, so that thepassive

learning algorithm for these classes for which we can guarantee a faster convergence rate, given

that the guarantee depends®g, only throughu andx [[Lsybakov| 2004].

2.1.2 Disagreement Coefficient

Central to the idea of Algorithm 0, and the various generalizations there-of we will study, is
the idea of thaegion of disagreemertf the version space. Thus, a quantification of the per-
formance of these algorithms should hinge upon a description of how quickly the region of

disagreement collapses as the algorithm processes examples. This rate of collapse is precisely

captured by a notion introduced eke, 2007b], calledlibagreement coefficientt is

a measure of the complexity of an active learning problem, which has proven quite useful for

analyzing the convergence rates of certain types of active learning algorithms: for example, the

algorithms o rd [2006], Bey i ngford

[2009],

r [1994], Dasgupta, Hsu, and Monteleonil[2007]. Informally, it

guantifies how much disagreement there is among a set of classifiers relative to how close to
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someh they are. The following is a version of its definition, which we will use extensively

below.

Definition 2.1. The disagreement coefficient/ofvith respect taC underDyy [X] is

b, — sup EPIS(B(0 1)

r>10 T

wherer, can either be defined ds giving a coarse analysis, or for a more subtle analysis we
can take it to be a function of, the number of labels (see Section2.7.1 for such a definition
valid for the main theorems of this chapter_2[11-2.15).

We further define the disagreement coefficient for the hypothesisChagh respect to the
target distributionDxy asf = limsup,,_.._ 6, , where{h®} is any sequence &f* < C with

er(h®*)) monotonically decreasing te.

In particular, we can always bound the disagreement coeftibiesup, . 6, > 0.

Because of its simple intuitive interpretation, measuring the amount of disagreement in a local
neighborhood of some classifigr the disagreement coefficient has the wonderful property of
being relatively simple to calculate for a wide range of learning problems, especially when those

problems have some type of geometric representation. To illustrate this, we will go through a

few simple examples, taken fro ke, 2007b].

Consider the hypothesis class of threshadldsn the interval0, 1] (for = € [0, 1]), where
h.(x) = +1iff z > z. Furthermore, supposByxy[X] is uniform on[0, 1]. In this case, it is
clear that the disagreement coefficient is at n2psince the region of disagreement®fh., r)
is roughly{z € [0,1] : |z — z| < r}. Thatis, since the disagreement region grows at rate
two disjoint directions as increases, the disagreement coeffictgnt= 2 for anyz € (0, 1).

As a second example, consider the disagreement coefficieintéovalson [0, 1]. As before,
let X = [0, 1] andDxy [X] be uniform, but this timéC is the set of intervalg, ;) such that for
v € [0,1], [jg(x) = +1iff x € [a,b] (for a,b € [0,1], a < b). In contrast to thresholds, the
disagreement coefficiends for the space of intervals vary widely depending on the particular

In particular, take anyt = Ij,; where0 < a < b < 1. In this casey;, < max {* 4}.

max{ro,b—a}’
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To see this, note that when < r < b — a, every interval inB(Ij,;,r) has its lower and
upper boundaries within of a andb, respectively; thusP(DI1S(B(I.y,7))) < 4r. How-

ever, whenr > max{rg,b — a}, everyinterval of width< r — (b — a) is in B(Ij,,7), SO

P(DIS(B(ljo, 7)) = 1.

As a slightly more involved example, consider the following theorem.

Theorem 2.2.[I[Hannekel, 2007b] Ift is the surface of the origin-centered unit spher&ihfor

d > 2, Cis the space of linear separators whose decision surface passes through the origin, and

Dxy [X] is the uniform distribution o', thenVh € C the disagreement coefficieft satisfies

imin{ﬂ\/g,i} <0, < min{ﬂ\/g,l}.
To

To

Proof. First we represent the concepts@has weight vectorsy € R? in the usual way. For
wy, we € C, by examining the projection dPxy [X] onto the subspace spanned{ay;, w,},
we see thalP(x : sign(w; - ) # sign(ws - x)) = w Thus, for anyw € C and
r<1/2, B(w,r) = {w' : w-w > cos(nr)}. Since the decision boundary correspondingto

is orthogonal to the vectar’, some simple trigonometry gives us that

DIS(B(w,r)) ={x € X : |z - w| < sin(nr)}.

Letting A(d, R) = 2“‘;/(255 — denote the surface area of the radi@sphere ifR¢, we can express
2

the disagreement rate at raditas

P(DIS(B(w,r)))

sin(7r) d sin(7r) _
_ 1 / A(d—l, /1—x2>d$:L)/ (1—x2)¥dx (%)
—sin(rr) _

A<d7 1) sin(mr ﬁr (%1 sin(mr)
(¢
< ﬁ%m(w) < Vd = 2sin(rr) < V.

For the lower bound, note th& DIS(B(w,1/2))) = 1s06,, > min {2, %} and thus we need
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only consider, < £. Supposing, < r < g, note thaf(x) is at least
sin(7r) sin(7r)
/ 1 — 22 d:z: > / e~ 4y
1 , 1 .
> — 5 m1n{2, \/Esm(m")} > 7 min {1,7?\/&7"} :

O

The disagreement coefficient has many interesting progelhtat can help to bound its value

for a given hypothesis class and distribution. We list a few elementary properties below. Their

proofs, which are quite short and follow directly from the definition, are left as easy exercises.

Lemma 2.3. [Close Marginals]tl:la.nn_el, , 200i7b] Suppase € (0, 1] s.t. for any measurable

setA C X, APp, (A) < Pp, (A) < iPp, (A). Leth : X — {—1,1} be a measurable classifi¢
and supposé,, andd, are the disagreement coefficients fowith respect taC underDx and
D', respectively. Then

A&<@<ﬁ%

v

Lemma 2.4. [Finite Mixtures] Supposéa € [0, 1] s.t. for any measurable sgt C X',
Pp, (A) = aPp, (A) + (1 — a)Pp,(A). For a measurablé, : X — {—1,1}, let6\" be the
disagreement coefficient with respecttainderD;, 6\* be the disagreement coefficient with

respect taC underD,, andf, be the disagreement coefficient with resped tonderDy. Then

O <6 + 6.

Lemma 2.5. [Finite Unions] Supposé € C; N C; is a classifier s.t. the disagreement
coefficient with respect t6, underDy is 6\" and with respect t@, underDy is 6> . Then if

0, is the disagreement coefficient with respecdCte- C; U C, underDy, we have that

max {0, 07} < 0, <o) + 67

The disagreement coefficient has deep connections to setbealquantities, such as dou-

bling dimension [Li and Long, 2007] and VC dimensi ).n_[Ma.;Lnik 982]. See [Hanheke,[2007b],
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:)Li.Zl)ﬁdLﬁLﬂAﬂﬂﬂMﬂﬂJm 2008], and
ingf 09] for further discussions of various uses of the dis-

agreement coefficient and related notions and extensions in active learning. In particular,

B.ng.eIZLm.QUQaSQMa._aDd_LaDQJOLd_LZOOQ] present an interesting analysis using a natural ex-

tension of the disagreement coefficient to study active learning with a larger family of loss func-

tions beyond) — 1 loss. As a related aside, although the focus of this thesis is active learning,
interestingly the disagreement coefficient also has applications in the analysissivdearn-

ing; see Sectiof 2.9 for an interesting example of this.

2.2 General Algorithms

The algorithms described below for the problem of active learning with label noise each represent
noise-robust variants of Algorithm 0. They work to reduce the set of candidate hypotheses, while
only requesting the labels of examples in the region of disagreement of these candidates. The
trick is to only remove a classifier from the candidate set once we have high statistical confidence
that it is worse than some other candidate classifier so that we never remove the best classifier.

However, the two algorithms differ somewhat in the details of how that confidence is calculated.

2.2.1 Algorithm 1

The first algorithm, originally proposed by Balcan, Beygelzimer, and La gl‘_o_Ld_[2006], is typi-

cally referred to asi? for Agnostic Active This was historically the first general-purpose ag-
nostic active learning algorithm shown to achieve improved error guarantees for certain learning

problems in certain ranges ofandv. A version of the algorithm is described below.
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Algorithm 1
Input: hypothesis clags, label budget:, confidencel
Output: classifieh

0.V «—C,R« DIS(C),Q «—0,m <0
l1.Fort=1,2,....n
If P(DIS(V)) < iP(R)

R«— DIS(V);Q — 0

If P(R) < 27", Returnanyh € V
m «— min{m’ > m: X,, € R}
Request, and letQ «— Q U {(X,,,Y,,)}
Ve—{heV:LB(h,Q,d/n) < glei‘l}UB(h’,Q,é/n)}
hy argl;lréi‘l/lUB(h,Q,(S/n)
B (UB(he, Q,6/n) = min LB(h. Q.5 /n))B(R)

10. Returnh,, = h;, wheref = argmin §,
te{l,2,...,n}

© © Nogakwd

Algorithm 1 is defined in terms of two functiong/ B and L B. These represent upper and
lower confidence bounds on the error rate of a classifier fébmith respect to an arbitrary
sampling distribution, as a function of a labeled sequence sampled according to that distribution.

As long as these bounds satisfy
Py pm{Vh € C,LB(h,Z,0) < erp(h) <UB(h,Z,§)} >1—9§

for any distributionD over X x {—1,1} and anyé € (0,1/2), andUB and LB converge to

each other as: grows, this algorithm is known to be correct, in thath) — v converges td in

probability [Balcan, Beygelzimer, and Langf Ld_ZOOG]. For instance, Balcan, Beygelzimer, and

Langford suggest defining these functions based on classic results on uniform convergence rates

in passive learning [\/apris_]_JBZ], such as

UB(h,Q,d) = min{erg(h) + G(|Q|,9),1}, LB(h,Q,d) = max{erg(h) — G(|Q|,0),0},

2.1)

In $4dIn 267

< and by conventioidz(0, ) = oo. This choice is justified

whereG(m,§) = L +

by the following lemma, due i
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Lemma 2.6. For any distributionD over X’ x {—1,1}, and anys > 0 andm € N, with

probability> 1 — § over the draw o7 ~ D™, everyh € C satisfies

lerz(h) —erp(h)| < G(m,9). (2.2)
To avoid computational issues, instead of explicitly repreéimg the set$” and R, we may

implicitly represent it as a set of constraints imposed by the condition in Step 7 of previous
iterations. We may also repla8¢D/S(1)) andP(R) by estimates, since these quantities can be

estimated to arbitrary precision with arbitrarily high confidence using onlgbeledexamples.

2.2.2 Algorithm 2

The second algorithm we study was originally proposed by Dasgupta, Hsu, and Monteleani [2007].

It uses a type of constrained passive learning subroutiberl, defined as follows.

LEARNC(L, Q) = he?cr;g?(ifgzo erg(h).

By convention, if nah € C haser(h) = 0, LEARN¢(L, Q) = @.

Algorithm 2
Input: hypothesis clags, label budget:, confidencel
Output: classifieh, set of labeled examples, set of labeled exampleég

0.L—~0,Q 0
1. Form=1,2,...
2. If|Q| =nor|L| = 2", Returnh = LEARNc(L, Q) along with£ andQ
3. Foreachy € {—1,+1},leth® = LEARNc(L U {( X, %)}, Q)
4. If somey hash!"¥) =g or
eer(h(_y)) — €T£UQ(h(y)) > Am_l(ﬁ, Q, h(yz h(_yz 5)
Thenl — LU {(X,,,y)}
Else Request the labg], and letQ) «— Q U {(X,,,Yn)}

Algorithm 2 is defined in terms of a functiah,, (£, Q, R, h=¥) §), representing a thresh-

oo

old for a type of hypothesis test. This threshold must be set carefully, since thes@tis not

actually ani.i.d. sample fror®yy . IDasgupta, Hsu, and MonteleoLj_[Z)O?] suggest defining this

function as

AL, QW% WD §) = 32 + B, <\/emQ(h<y>) + \/eer(m—w)) (29
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where 3, = \/41“(8m(m+1)c[2m]2/5) and C[2m] is the shatter coefficient [e.g., Devroye et al.,

m

1996]; this suggestion is based on a confidence bound they derive, and they prove the correct-

ness of the algorithm with this definition. For now we will focus on the first return value (the
classifier), leaving the others for Sectionl2.4, where they will be useful for chaining multiple

executions together.

2.3 Convergence Rates

In both of the above cases, one can prove fallback guarantees stating that neither algorithm is sig-

nificantly worse than the minimax rates for passive learning [Balcan, Beygelzimer, and Langford,

~

006, Dasgupta, Hsu, and Monteleoni, 2007]. However, it is even more interesting to discuss sit-

uations in which one can prove error rate guarantees for these algorithms signitiedteiyhan

those achievable by passive learning. In this section, we begin by reviewing known results on
these potential improvements, stated in terms of the disagreement coefficient; we then proceed to
discuss new results for Algorithm 1 and a novel variant of Algorithm 2, and describe the conver-
gence rates achieved by these methods in terms of the disagreement coefficient and Tsybakov’'s

noise conditions.

2.3.1 The Disagreement Coefficient and Active Learning: Basic Results

Before going into the results for general distributi@ng, on X' x {—1, +1}, it will be instructive

to first look at the special case when the noise rate is zero. Understanding how the disagreement
coefficient enters into the analysis of this simpler case may aid in digestion of the theorems and
proofs for the general case presented later, where it plays an essentially analogous role. Most of
the major ingredients of the proofs for the general case can be found in this special case, albeit

in a much simpler form. Although this result has not previously been published, the proof is

essentially similar to (one case of) the analysis of Algorithm Lin [Hanneke, 2007Db].
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Theorem 2.7. UpposeD xy € Realizable(C) for a VC classC, and letf € C be such that
er(f) =0, andf; < co. For anyn € N, with probability> 1 — ¢ over the draw of the

unlabeled examples, the classifigrreturned by Algorithm Oaften label requests satisfies

er(hy) <2 - exp {_69f(4d In(4467) + In(2n/0) } |

Proof. The caseliam(C) = 0 is trivial, so assuméiam(C) > 0 (and thus? > 1 andf; > 0).
Let V; denote the set of classifiers@consistent with the firstlabel requests. P(DI1S(V;)) =

0 for somet < n, then the result holds trivially. Otherwise, with probabilitythe algorithm uses
all n label requests; in this case, consider somen. Letx,,, denote the example corresponding
to thet'" label request. Lek,, = 460(4d In(16ef;) + In(2n/0)), t' = t + \,, and letz,, , denote
the example corresponding to label request numb@ssuming < n — A,). In particular, this
implies [{Zm, 41, Tm42, - - - Tm,, } N DIS(V;)| > A, which means there is an i.i.d. sample of
size ), from Dxy[X] given X € DIS(V;) contained in{z,,, 41, Tm,+2, - - -, T, . NAMely, the

first \,, points in this subsequence that ardJdaS(V;).

Now recall that, by classic results from the passive learning literature [e.g., Blumer et al.,

198¢ Ma,p_nJ< 1982], this implies that on an evént holding with probabilityl — §/n,

4dIn 22 4 I 20
sup er(h| DIS(V;)) < =4 TS 120y,
hEVt/ n

SinceV, C V;, this means
P(DIS(Vy)) < P(DIS(B(f,P(DIS(V;))/(207)))) < P(DIS(V;))/2.

By a union bound, the events;; hold for allt € {i\, : i € {0,1,...,[n/A\,] — 1}} with

probability> 1 — §. On these events, if > )\, [log,(1/¢)], then (by induction)

sup er(h) <P(DIS(V,)) <e.
heVn

Solving fore in terms ofn gives the result. O
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2.3.2 Known Results on Convergence Rates for Agnostic Actiesarning

We will now describe the known results for agnostic active learning algorithms, starting with
Algorithm 1. The key to the potential convergence rate improvements of Algorithm 1 is that,
as the region of disagreemeftdecreases in measure, the magnitude of the error difference
er(h|R) — er(l'|R) of any classifiersh, ”’ € V under theconditional sampling distribution
(given R) can become significantly larger (by a factogf?) ') thaner(h) — er(h'), making it

significantly easier to determine which of the two is worse using a sample of labeled examples.

In particular, [Hanneke, 2007b] developed a technique for analyzing this type of algorithm, re-

sulting in the following convergence rate guarantee for Algorithm 1. The proof follows similar

reasoning to what we will see in the next subsection, but is omitted here to reduce redundancy;

see[Hanneke, 2007b] for the full details.

Theorem 2.8.[I[Hanneke, 2007b] Let,, be the classifier returned by Algorithm 1 when allowed

n label requests, using the boun@&1) and confidence parametér> 0. Then there exists a

finite universal constant such that, with probabilitg> 1 — 6, Vn € N,

. [12602d log n 1 [ n
hy) —v < 2] - /== 0 -
erihn) —v < n o8 v202dlog * 56$p{ 092d}

Similarly, the key to improvements from Algorithm 2 is thatrasncreases, we only need to

request the labels of those examples in the region of disagreement of the set of classifiers with
near-optimal empirical error rates. ThusPifD15(C(e))) shrinks as decreases, we expect the
frequency of label requests to shrinkragncreases. Since we are careful not to discard the best
classifier, and the excess error rate of a classifier can be bounded in termagf thection, we

end up with a bound on the excess error which is convergimg, ithe number otinlabeledex-

amples processed, even though we request a number of labels growing slower ivéien this
situation occurs, we expect Algorithm 2 will provide an improved convergence rate compared

to passive learning. Using the disagreement coeffici.enL_Da.sgup.La_I:Ls.u_a.n.d_M_J1 eledni [2007]

prove the following convergence rate guarantee.
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Theorem 2.9.[IDasgupta, Hsu, and Monteleohi, 2007] Liet be the classifier returned by

Algorithm 2 when allowed label requests, using the threshdf3), and confidence parameter
0 > 0. Then there exists a finite universal constastich that, with probability> 1 — ¢,

Vn € N,

. v20d log + log - 1 n
hy) —v < 0208 4 4 /dlog~ - — .
er(hy,) —v < c\/ - + 0g 5+ exp DTz ]

Note that, among other changes, this bound improves the depea on the disagreement

coefficient,d, compared to the bound for Algorithm 1. In both cases, for certain rangés of

v, andn, these bounds can represent significant improvements in the excess error guarantees,
compared to the corresponding guarantees possible for passive learning. However, in both cases,
whenv > 0 these bounds have asymptotiaclependence on of ©(n~'/2), which is no better

than the convergence rates achievable by passive learning (e.g., by empirical risk minimization).
Thus, there remains the question of whether either algorithm can achieve asymptotic convergence
rates strictly superior to passive learning for distributions with nonzero noise rates. This is the

topic we turn to next.

2.3.3 Adaptation to Tsybakov’s Noise Conditions

It is known that for most nontriviaC, for anyn andv > 0, for every active learning algorithm

there is some distribution with noise ratefor which we can guarantee excess error no better
thano vn~1/? [Kaaridainen, 2006]; that is, the—'/? asymptotic dependence anin the above
bounds matches the corresponding minimax rate, and thus cannot be improved as long as the
bounds depend oPxy only viav (andd). Therefore, if we hope to discover situations in which
these algorithms have strictly superior asymptotic dependence we will need to allow the
bounds to depend on a more detailed description of the noise distribution than simply the noise
ratev.

As previously mentioned, one way to describe a noise distribution using a more detailed
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parameterization is to use Tsybakov’s noise conditidngfakov(C, k, 1)). In the context of
passive learning, this allows one to describe situations in which the rate of convergence is be-
tweenn~! andn~'/2, even whenv > 0. This raises the natural question of how these active
learning algorithms perform when the noise distribution satisfies this condition with fiitel

x parameter values. In many ways, it seems active learning is particularly well-suited to ex-
ploit these more favorable noise conditions, since they imply that as we eliminate suboptimal
classifiers, the diameter of the version space decreases; thus, fosvahles, the region of
disagreement should also be decreasing, allowing us to focus the samples in a smaller region and

accelerate the convergence.

Focusing on the special case of one-dimensional threshold classifiers under a uniform marginal

distribution,_C_aslm_a.n.d_N_ome [2006] studied conditions relatefisthakov(C, k, p1). In par-

ticular, they studied a threshold-learning algorithm that, unlike the algorithms described here,
takesr asinput, and found its convergence rate tche(k’%)m whenk > 1, andexp{—cn}

for some (i-dependent) constant whenx = 1. Note that this improves over the 71 rates

achievable in passive Iearnir,g_m;Lb.J ov, 2004]. Furthermore, they prove that awalte =

(or exp{—c'n}, for somec, whenx = 1) is also alower boundon the minimax rate. Later, in

a personal communication, Langford reported that this near-optimal rate is also achieved by Al-
gorithm 1 for the same learning problem (one-dimensional threshold classifiers under a uniform
marginal distribution), leading to speculation that perhaps these improvements are achievable in

the general case as well (under conditions on the disagreement coefficient).

Other than the one-dimensional threshold learning problem, it was not previously known
whether Algorithm 1 or Algorithm 2 generally achieves convergence rates that exhibit these

types of improvements.
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2.3.4 Adaptive Rates in Active Learning

The above observations open the question of whether these algorithms, or variants thereof, im-
prove this asymptotic dependencerant turns out this is indeed possible. Specifically, we have

the following result for Algorithm 1.

Theorem 2.10.Let /,, be the classifier returned by Algorithm 1 when alloweldbel requests
using the bound@.1) and confidence parametér> 0. Suppose further that

Dxy € Tsybakov(C, k, ) for finite parameter values > 1 andu > 0 and VC clas<C. Then
there exists a finitext and u-dependent) constantsuch that, for any: € N, with probability
> 19,

exp {—m} ., whenk =1

C<M>_* whenr > 1

n

er(hy) — v <

Proof. The case ofliam(C) = 0 clearly holds, so we will focus on the nontrivial case of
diam(C) > 0 (and thereforef > 0 andd > 1). We will proceed by bounding thiabel
complexity or size of the label budgetthat is sufficient to guarantee, with high probability, that
the excess error of the returned classifier will be at md@fir arbitrarye > 0); with this in hand,
we can simply bound the inverse of the function to get the result in terms of a bound on excess
error.

First note that, by Lemm@=3.6 and a union bound, on an event of probabiity, (Z2)
holds withn = ¢/n for every set), relative to the conditional distribution given its respective
R set, for any value ofi. For the remainder of this proof, we assume that thisé probability
event occurs. In particular, this means that for everg C and every set in the algorithm,
LB(h,Q,d/n) < er(h|R) < UB(h,Q,d/n), for the setr that( is sampled under. Thus, we

always have the invariant that at all times,
Vy>0,{h eV :er(h) —v <~} #0, (2.4)

and therefore also th&t, er(h;) — v = (er(h|R) — infrey er(h|R))P(R) < 3,. We will spend
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the remainder of the proof bounding the sizexcufficient to guarantee sonmg < e.
Recalling the definition of thé®) sequence (from Definitidod.1), note that after step
{h € V : limsupy, P(h(X) # h®) (X)) > %}

_ { R <nmsupk P(h(X) # hUﬂ(X)))“ N (@)}

0

v (et 0y (0

{ H
ieveam s (D))

{

{

heV:er(h|lR)— hllrg/ er(l'|R) > P(R)“_l(Que)_“}
heV :UB(h,Q,0/n)— hleig LB(W,Q,d/n) > IP(R)“_I(ZLLH)_“}
= {h €V :LB(h,Q,5/n) — frll/’lelg UB(I,Q,d/n) > P(R)"(2uf) ™" — 4G(|Q), 6/n)} .

By definition, everyh € V hasLB(h,Q,d/n) < mingcy UB(R',Q,d/n), so for this last set to
be nonempty after step we must havé®(R)~"~(2u0) " < 4G(|Q|,d/n). On the other hand, if
{h € V : limsup, P(h(X) # h® (X)) > %} — (), then

P(DIS(V)) <P(DIS({h € C : limsup P(h(X) # h® (X)) < P(R)/(20)}))

= limsup P(DIS({h € C: P(h(X) # hW (X)) < P(R)/(20)})) < limsup 6y, Pé];) = ?,

so that we will definitely satisfy the condition in st@pon the next round. Sinc)| gets reset
to 0 upon reaching step, we have that after every execution of stepP(R)"'(2u0)™" <

4G(|1Q| — 1,9/n).

If P(R) < < 7 then certainly3;, < e. So on any round for which

€ €
2G(IQ|-1,6/n) 2G(IQ1,0/n

B > ¢, we must have(R) > s s7m-

rk—1
rouna for whichg, > €, | s 7= 2u0)™" < — 1,0/n), which implies (by
d f hichj3 2G(\Q\El,6/n) 0 4G(1Q ) hich implies (b

simple algebra)

2k—2

QI < (%) " (6p0)? <ln§ +(d + 1)ln(n)) 1.
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Since we need to reach st@@t most[log(1/¢)] times before we are guaranteed sofhe< ¢

(P(R) is at least halved each time we reach stg@any

2k—2

n>1+ ((%) " (6u6)? (m% +(d+ 1)1n(n)) + 1) 1og2§ (2.5)

suffices to guarantee sorpe < e. This implies the stated result by basic inequalities to bound

the smallest value af satisfying [Z.b) for a given value of. O

If the disagreement coefficient is relatively small, Theof&i can represent a significant

improvement in convergence rate compared to passive learning, where we typically expect rates

of ordern="/2x=1) [Mammen and Tsybakov, 1999£¥t1al< v, 4004]; this gap is especially no-

table when the disagreement coefficient arete small. In particular, the bound matches (up to

log factors) the form of the minimax ratewer boundproven by Castro and No aL_[ﬂ 06] for

threshold classifiers (whefe= 2). Note that, unlike the analysis lof Castro and Nawak [2006],

we do not require the algorithm to be given any extra information about the noise distribution,
so that this result is somewhat stronger; it is also more general, as this bound applies to an arbi-
trary hypothesis class. In some sense, Thedren 2.10 is somewhat surprising, since the bounds
U B and LB used to define the sét and the boundg; are not themselves adaptive to the noise
conditions.

Note that, as before; gets divided by)? in the rates achieved hy?>. As before, it is not
clear whether any modification to the definitionsltoB and LB can reduce this exponent on
6 from 2 to 1. As such, it is natural to investigate the rates achieved by Algorithm 2 under
Tsybakov(C, k, 1); we know that it does improve the dependence dor the worst case rates
over distributions with any given noise rate, so we might hope that it does the same for the
rates over distributions with any given values;ofindx. Unfortunately, we do not presently
know whether the original definition of Algorithm 2 achieves this improvement. However, we
now present a slight modification of the algorithm, and prove that it does indeed provide the

desired improvement in dependenc&lpwhile maintaining the improvements in the asymptotic
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dependence on. Specifically, consider the following definition for the threshold in Algorithm

2.
An(L,Q,hW BV §) =3Ec(LUQ,5; L), (2.6)

whereéc(-,-:-) is defined in SectioRi2.6, based on a notion of local Rademacher complexity
studied by Koltchinskii [2006]. Unlike the previous definitions, these definitions are known to
be adaptive to Tsybakov’s noise conditions, so that we would expect them to be asymptotically
tighter and therefore allow the algorithm to more aggressively prune the set of candidate hypothe-

ses. Using these definitions, we have the following theorem:; its proof is included in Jection 2.7.

Theorem 2.11.Supposeh,, is the classifier returned by Algorithm 2 with threshold a¢am),
when allowed: label requests and given confidence paraméter(0. Suppose further that
Dxy € Tsybakov(C, k, 1) for finite parameter values > 1 andu > 0 and VC clas<C. Then

there exists a finites(and ;. -dependent) constantsuch that, with probability> 1 — 9, Vn € N,

1 / n _
(}AL ) - gexp{— Wf’(d/é)}’ When/{—l
ering,) —v .

c(@gﬁgﬂﬂ)ﬁﬁ, whenr > 1

n

Note that this does indeed improve the dependenag meducing its exponent fro to 1;
we do lose some in that there is now a square root in the exponent eftheé case, but it is
likely that an improved definition of and a refined analysis can correct this. The bound in The-
oremZ11 is stated in terms of the VC dimensibidowever, for certain nonparametric function

classes, it is sometimes preferable to quantify the complexity of the class in terms of a constraint

on theentropy (with bracketing) of the clasgntropy,(C, o, p) [see e.g., Castro and Nowak,

007, Koltchinskii, 2006, Tsyba 4. van der Vaart and We

1996].

In passive learning, it is known that empirical risk minimization achieves a rate of order

n=/@te=1) Sunder Entropyy (C. a, p) N Tsybakov(C, k, p), and that this is sometimes tight

[Koltchinskii, 2006, Tsybakowv, 2004]. The following theorem gives a bound on the rate of con-

vergence of the same version of Algorithm 2 as in Thedren 2.11, this time in terms of the entropy

with bracketing condition which, as before, is faster than the passive learning rate when the dis-
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agreement coefficient is small. The proof of this is include8ectiod Z17.

Theorem 2.12.Supposeh,, is the classifier returned by Algorithm 2 with threshold a¢dm),
when allowed: label requests and given confidence paraméter(. Suppose further that
Dxy € Entropy)(C, o, p) N Tsybakov(C, k, u) for finite parameter values > 1, . > 0,

a > 0,andp € (0,1). Then there exists a finite (1, « andp -dependent) constantsuch that,

with probability> 1 — §, Vn € N,

elogz(n/a))ﬁ‘E

n

w@w—u§c<

Although this result is stated for Algorithm 2, it is concdiea that, by modifying Algorithm

1 to use definitions o¥ and; based on@c(Q, d; ), an analogous result may be possible for

Algorithm 1 as well.

2.4 Model Selection

While the previous sections address adaptation to the noise distribution, they are still restrictive
in that they deal only with finite complexity hypothesis classes, where it is often unrealistic
to expect convergence to the Bayes error rate to be achievable. We address this issue in this
section by developing a general algorithm for learning with a sequence of nested hypothesis

classes of increasing complexity, similar to the setting of Structural Risk Minimization in passive

learning [Vapnik| 1982]. The starting point for this discussion is the assumption of a structure on

C, in the form of a sequence of nested hypothesis classes.

ClCCQC"'

Each class has an associated noiseuwate inf,,cc, er(h), and we define,,, = lim ;. We also
let §; andd; be the disagreement coefficient and VC dimension, respectively, for tlig.séte
are interested in an algorithm that guarantees convergence in probability of the errontate to

We are particularly interested in situations whege= v*, a condition which is realistic in this
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setting sinc&; can be defined so that it is always satisfied [seele.q., Devroye, Gyorfi, and|L ugosi,

1996]. Additionally, if we are so lucky as to have some= v*, then we would like the conver-
gence rate achieved by the algorithm to be not significantly worse than running one of the above
agnostic active learning algorithms with hypothesis cldsalone. In this context, we can de-

fine a structure-dependent version of Tsybakov’s noise conditign Byybakov(C;, k4, ;), for

i€l
some/ C N, and finite parameters;, > 1 andyu; > 0.

In passive learning, there are several methods for this type of model selection which are

known to preserve the convergence rates of each dassderTsybakov(C;, Ky, 11;). [€.9.,

Koltchinskii, 2006, Tsybakov, 2004]. In particular, Koltchinskii [2006] develops a method that

performs this type of model selection; it turns out we can modify Koltchinskii’'s method to suit
our present needs in the context of active learning; this results in a general active learning model
selection method that preserves the types of improved rates discussed in the previous section.
This modification is presented below, based on using Algorithm 2 as a subroutine. (It may also

be possible to define an analogous method that uses Algorithm 1 as a subroutine instead.)

Algorithm 3
Input: nested sequence of clas$€s}, label budget:, confidence parametér
Output: classifief,,

0. Fori = |\/n/2], |/n/2] — 1, |\/n/2] —2,...,1

1. LetZ;, and@);, be the sets returned by Algorithm 2 run with and the
threshold in[[Z56), allowingn/(2:%) | label requests, and confident&?2:?)

2. Leth;, < LEARNC,(U;j>iLin, Qin)

3. Ifhy, #@andVjs.t.i<j < |/n/2],
4, by, — hip,
5. Returnh,,

The functioné.(-, ;) is defined in Sectiof2.6. This method can be shown to correctly
converge in probability to an error rate @f at a rate never significantly worse than the original
passive learning method of Koltchinskii [2006], as desired. Additionally, we have the following
guarantee on the rate of convergence under the structure-dependent definition of Tsybakov’s

noise conditions. The proof is similar in style to Koltchinskii’'s original proof, though some
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care is needed due to the altered sampling distribution anddhstraint set;,,. The proof is

included in Sectioi 217.

Theorem 2.13.Suppose’}n is the classifier returned by Algorithm 3, when allowethbel
requests and confidence parameter 0. Suppose further th&?yy € () Tsybakov(C;, ki, ;)
el

for some nonempty C N and for finite parameter values > 1 andy; > 0. Then there exist

finite (x; and u; -dependent) constanéssuch that, with probability> 1 — 4, Vn > 2,

1 n H o
: | S'Q”fp{‘\/m}’ =1
er(hn) — Voo < 3min(y; — vy) + "

KA .
€1 2 d;n 2k;—2
d;0; log® —— v .
c(i”g&) , if k; > 1

Z n

In particular, if we are so lucky as to have= v* for some finite € I, then the above algorithm

achieves a convergence rate not significantly worse than that guaranteed by Theatem 2.11 for

applying Algorithm 2 directly, with hypothesis cla&s.

As in the case of finite-complexit{Z, we can also show a variant of this result when the
complexities are quantified in terms of the entropy with bracketing. Specifically, consider the
following theorem; the proof is in Sectidn 2.7. Again, this represents an improvement over

known results for passive learning when the disagreement coefficient is small.

Theorem 2.14.Supposeh,, is the classifier returned by Algorithm 3, when allowethbel

requests and confidence parameter 0. Suppose further that

Dxy € () Tsybakov(C;, ki, ;) N SntropyH(Ci, a;, p;) for some nonempty C N and finite
i€l

parametergy; > 0, k; > 1, o; > 0 andp; € (0,1). Then there exist finites, y;, o; andp;

-dependent) constantéssuch that, with probability> 1 — §, Vn > 2,

el n

2 0;lo 2 in 2"”~ij/ir2
er(hp) — Voo < 3min(y; — vs) + ¢ (ﬁ) .

In addition to these theorems for this structure-dependersion of Tsybakov’s noise con-

ditions, we also have the following result for a structure-independent version.
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Theorem 2.15.Supposeh,, is the classifier returned by Algorithm 3, when allowethbel
requests and confidence parameter 0. Suppose further that there exists a consjant 0
such that for all measurable : X — {—1,1}, er(h) — v* > uP{h(X) # h*(X)}. Then there

exists a finite g-dependent) constantsuch that, with probability> 1 — §, Vn > 2,

. / n
hy,) —v* < cmin(y; — v*) +e — .
er(h,) —v* <c Z'1n(1/ V) +exp { cd0,log" % }

The case wherer(h) — v* > pP{h(X) # h*(X)}" for k > 1 can be studied analogously,

though the rate improvements over passive learning are more subtle.

2.5 Conclusions

Under Tsybakov’s noise conditions, active learning can offer improved asymptotic convergence
rates compared to passive learning when the disagreement coefficient is small. It is also possible
to preserve these improved convergence rates when learning with a nested structure of hypothesis
classes, using an algorithm that adapts to both the noise conditions and the complexity of the

optimal classifier.

2.6 Definition of &

For any functionf : X — R, and&y, &, ... a sequence of independent random variables with
distribution uniform in{—1, +1}, define theRademacher procedsr f under a finite sequence

of labeled example® = {(X/,Y/)} as

1) T

Q|

R(f:Q) = ﬁ > (X,

The &; should be thought of as internal variables in the learning algorithm, rather than being

fundamental to the learning problem.
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For any two sequences of labeled examples: {(X/,Y/)} and@ = {(X/,Y/)}, define
C[L] ={h e C:erg(h) =0},

C(e L, Q) = {h e C[L] : erg(h) — J?éﬁ;} ero(h') < €},

let
Q|

De(e£.Q) = sup ﬁzﬂ[hl(Xfl)#hz(Xél)],
) i=1

h1,h2eC(e;L,Q
and define
A 1
¢c(6L,Q) =5  sup  R(hi —hg; Q).
h1,h2€C(6;£,Q)
Leto € (0,1], m € N, and define

20m? log, (3m)
J

Sm(0) =1In

LetZ. = {j € Z : 27 > ¢}, and for any sequence of labeled examples- {(X/,Y/)},

RN

define@,, = {(X{,Y]), (X5, Y3),...,(X],,Y")}. We use the following notation of Koltchin-

mr T m

skii Koltchinskii [2006] with only minor modifications. Fare [0, 1], define

UC(€> 57 'C? Q) - ]A(G(C (66, ,C, Q) + S\Q\((S)l?g‘(ée;ﬁ,Q) + SQQ(5)>

£(Q.6: £)= min inf{e>0:Vje ZeUc(20; £, Q) <2771}
where, for our purposes, we can take= 752, and¢ = 3/2, though there seems to be room for

improvement in these constants. We also defipg), 6: C, £) = oo by convention.

2.7 Main Proofs

Let Ec(m,8) = Ec(Zn,0;0). For eachm € N, let b}, = arg min e, (1) be the empirical risk
S
minimizer inC for thetrue labels of the firsin examples.
Fore > 0, defineC(¢) = {h € C:er(h) —v < e€}. Form € N, let

de(m.e) =E S |(er(h1) = erm(h1)) = (er(hs) — erm(hs))l;
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(~]<c(m, €,0)= K <¢<c(m,6€) + \/Sm(é)diizl((:(&)) n 8%5)) |

Ec(m,§) = inf {e >0:VYj € Z,Uc(m,2,6) < 2]'—4} ’

where, for our purposes, we can take= 8272 andé = 3. We also defin€(0,d) = co. The

following lemma is crucial to all of the proofs that follow.

Lemma 2.16. [Koltchinskii, 2006] There is an eveii: s with P(E¢s) > 1 — §/2 such that, on
eventEc s, Vm € N,Vh € C, V1 € (0,1/m),Vh' € C(1),

er(h) — v < max {2(erm(h) — erm(h) + 1), Ec(m, 5)}

erm(h) — erm(h2) < 2 max {(er(h) — ), &c(m, 5)} ,

E(C(mu 5) S éC(mu 5)7

and for anyj € Z with 2/ > &¢(m, ),

sup  |(erp(hy) —er(hy)) — (erm(he) —er(hg))| < U(C(2j, 5,0, Z,,).

hi,hoeC(27)

This lemma essentially follows from details of the proof oflt€binskii’'s Theorem 1, Lemma
2, and Theorem 3 [Koltchinskii, 206] We do not provide a proof of Lemnfia2]116 here. The

reader is referred to Koltchinskii’'s paper for the details.

2.7.1 Definition ofr

If 6 is bounded by a finite constant, the definition-gfis not too important. However, in some
cases, setting, = 0 results in a suboptimal, or even infinite, valuedpfwhich is undesirable.

In these cases, we would like to sgtas large as possible while maintaining the validity of

the bounds, and if we do this carefully we should be able to establish bounds that, even in the
worst case whefi = 1/r,, are never worse than the bounds for some analogous passive learning

our min‘ modification to Koltchinskii's version of¢(m, §) is not a problem, sincec(m, ¢) andsmT@ are

m<|Q

nonincreasing functions of.
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method; however, to do this requiresto depend on the parameters of the learning problem:
namelyn, ¢, C, andDyy .

Generally, depending on the bound we wish to prove, different valuesg ofy be appro-
priate. For the tightest bound in termsébproven below (namely, LemniaZ]18), the following
definition ofr, gives a good bound. Defining

’fh(c(n, (5, ny) = min {m eN:n< 10g2 %T?Q + Qemz_ P(DIS(C(Qéc(g, (S))))} y (27)

/=0
we can letry = r¢(n, 0, Dxy ), Where

Thc(n,5,DXY)_1
1 . s /
rc(n,d, Dxy) = Fc(n. 5. Dy ZZ:; diam(C(2E¢c(me(r',n,9),0))). (2.8)

We use this definition in all of the proofs below. In particular, with this definition, Lelnma 2.18 is

never significantly worse than the analogous known result for passive learning (though it can be

significantly better whefl << 1/r). For the looser bounds (namely, Theoréms?.11[and 2.12),
a larger value of, would be more appropriate; however, note that this same general technique

can be employed to define a good valuerfpin these looser bounds as well, simply using upper

bounds on[{Z]8) analogous to how the theorems themselves are derived from Ce€ndma 2.18 below.

2.7.2 Proofs Relating to Sectiof 213

For¢ € NU {0}, let £ andQ® denote the set§ and(, respectively, in step 4 of Algorithm

2, whenm — 1 = ¢; if this never happens during execution, then defiffé = 0§, Q) = Zz,.

Lemma 2.17.0n eventEc 5, V¢ € N U {0},
Ec(QU LY, 6;LY) = Ec((,0)

and

Ve > Ec(0,0), e Cole; £O) C Cy(e; 0).

Proof of LemmalZI4 Throughout this proof, we assume the evEnt; occurs. We proceed by

induction on?, with the base case éf= 0 (which clearly holds). Suppose the statements are true
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forall ¢ < ¢. The caseC”) = () is trivial, so assum&® =+ ). For the inductive step, suppose
h e @g(éc(ﬁ, (S), @)

Then for all?’ < ¢, we have
ero(h) — ere(hy) < Ec(l',6).
In particular, by LemmBZ16, this implies

er(h) — v < max {Q(erg(h) —ero(h2)), Ec(t, 5)} < 280(0,9),

and thus for any)’ € C,

A~

erp(h) —erp(h') < erp(h) — erp(h})

< ;max {er(h) — v, &c(l, 6)} < 3Ec(C,8) = 3Ec(QY), 5, L)),

Thus, we must haver ., (h) = 0, and thereforér € C,(Ec(¢,6); £L?). Since this is the case

for all suchh, we must have that
Col€cl(t,8); £Y) 2 CulEc(t,6); 0). (2.9)
In particular, this implies that
Ue(Eelt,8),8 £0,Q0) 2 Ue(€c(t,8),0:0,2) > 1Eelt,0),

where the last inequality follows from the definition &E(ﬁ, 9), (which is a power oR). Thus,
we must havec(QW U L0 §: £LO) > (4, 5).
The relation in[(ZB) also implies that
hi e Co(Ec(t,6); £LO),
and therefore
Ve > Ec(0,8), Cyle: £Y) C Cyle: 0),
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which implies

Ve > Ec(l,0), Uc(e,6; £9,QW) < Uc(e, 80, Z,).

But this mean€c(QW U £®,§; £O) < &¢(¢,8). Therefore, we must have equality. Thus, the

lemma follows by the principle of induction. O

Lemma 2.18. Suppose for any: € N, h,, is the classifier returned by Algorithm 2 with
threshold as iffZ.8), when allowed: label requests and given confidence paraméter0, and
suppose further that,, is the value ofQ| + |£| when Algorithm 2 returns. Then there is an

eventHc s such thatP(Hc s N Ecs) > 1 — 6, such that oc s N Ec s, Vn € N,
ET(iLn) -V S é(C(mna 5)7
and

4 2 mp—1 ~
n < min {mn, log, % + 4ed Z diam(C(2E¢ (¥, 5)))} :

£=0

Proof of LemmalZI8. Once again, assume evefit ; occurs. By Lemm&Z16/m > 0,

er(hy) — v < max {Q(ermn(ﬁn) - ermn(ﬁfnn) + 1), Ec(ma, 5)} :

~

Letting7 — 0, and noting thatr.(h%, ) = 0 (LemmalZ1l) impliegr,,, (h,) = ery,, (k% ),
we have

er(hn) —v < Ec(my,8) < Ec(mn,d),

where the last inequality is also due to LemmaR.16. Note thatét@dmn,d) represents an
interesting data-dependent bound.

To get the bound on the number of label requests, we proceed as follows. For any,
and nonnegative integér< m, let I, be the indicator for the event that Algorithm 2 requests
the labelY,,, and letN,, = 2”:_01 I,. Additionally, let I; be independent Bernoulli random
variables with

P[[,=1 =P {DIS((C(zéC(/z, 5)))} .
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Let N/, = 37! I;. We have that
P[{I, =1} N Ecs) <P |{Xp1 € DIS(Co(Ec(QW U L® 5Ly, £ONY N Em]
<P |{Xp1 € DIS(Co(Ec(t,6);0)} N Ew} <P [DIS((C(QE(C(& 5)))} —P[1} = 1].

The second inequality is due to Lemnias"2.17 Bndl2.16, while the third inequality is due to
LemmdZIb. Note that

E[N' ]| = Z_ Pl =1] = Z_ P {DJS(C(zéC(e, 5)))}}

Let us name this last quantity,. Thus, by union and Chernoff bounds,

4m?
P|<3dmeN: N, >max< 2eq,, ¢, + logy, — N Ecs

)
4m?
< Z P < N, > max < 2eq,, ¢ + log, = N Ecs
meN
4Am? ) )
< W%IP HNT,n > max{Qeqm,qm + log, T}H < %4—7”2 < 3

For anyn, we known < m,, < 2". Therefore, we have that on an event (which inclutiesg)

occuring with probability> 1 — 9, for everyn € N,

4m?
n < max{N,, ,log, m,} < max < 2eq¢mn,, Gm, + 10g,

5
4m? e N
<log, —" +2¢ > P{DIS(C(2€c((,0)))}.
=0

In particular, this impliesn,, = mc(n, d, Dxy) < m, (Wheremc(n,d, Dxy ) is defined in[(Z17)).

We now use the definition @f with ther, in .38).

~ 9 M —1 .

n < log, {% +2e Y P{DIS(C(2Ec(L,0)))}
(=0
4 o ;
<log, —" +2e Y max{diam(C(2Ec(¢,0))),re(n, §, Dxy)}
/=0
42 o . 4m? oy ;

< log, —" + de0 > diam(C(2&c((,))) < log, —= +4e® > diam(C(2Ec(, ))).

=0 /=0
]
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Lemma 2.19.0n eventH¢ ;s N Ec s (WhereHc s is from Lemm&Z18), under

Tsybakov(C, k, 1), Vn € N,

-e:vp{— /#}, ifk=1
Ec(imn, 0) < s

c(M)— ifre > 1

i
Sk

)

n

for some finite constant(depending om: and ), and under

Entropy; (C, o, p) N Tsybakov(C, k, p), ¥n € N,

K

~ 2 PP
Ee(mn. 8) < c (M) ,

n

for some finite constant(depending o, 1, p, anda).

Proof of Lemmal[Z19. We begin with the first cas&6ybakov(C, k, 1) only).

We know that
edlog %

we(m,e) < K\ -

for some constank” [see e.g.| Massart arflodie Nedélec, 2006]. Noting that:(m, ¢) <

we(m, diam(C(e))), we have that

Oc(m,e,8) < K (K\/ diam(C(c€))d108 ey \/ su(@)diam(C) | sm(a))

m m

m
1/6d1 1 1/k
< K max{ € 0g - | [ $m(0)€ ’ Sm(0) } ‘
\/ m m m

Taking anye > K" (%) m, for some constank” > 0, suffices to make this latter quantity

< 15- So for some appropriate constaiit(depending om andx), we must have that

- dlog ™\ Z=-T
Ec(m,8) < K ( %8s ) . (2.10)
m
Plugging this into the query bound, we have that
2 mp—1 L dl x Til
n < log, 4?” + 2ef (2 —i—/ pu(2K" )= <&) ) : (2.11)
1 X
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2k—2

If x > 1, I1) is at most""m;"~" dlog ™, for some constank™ (depending om and

1). Thisimplies

2k—1

2k—2
N .
M = <9dlogg ’

for some constark ®. Plugging this into[[Z10) and using Lemina2.18 completes the proof for

this case.

Onthe other hand, if = 1, (ZI1) is at mosk"#d log” ™=, for some constank” (depending

My > 5exp{K(3)1/%},

for some constank ®). Plugging this into[[Z10), using Lemria2.18, and simplifying the ex-

onx andy). This implies

pression with a bit of algebra completes this case.

For the bound in terms of, Koltchinskii [2006] proves that

~ . log ™\ 2n=1 log ™\ 2rFp=1
Ec(m, ) < Kfmax{m—mw, < o8 5) } <K' <ﬁ) , (2.12)

m m

for some constank” (depending on, «, andk). Plugging this into the query bound, we have

that

4 2 mp—1 10 xz 2,14:—71 2k+p—2 n
n < log, % + 2ed (2 + / [(2K')x ( s 5) ’ ) < K"0my"""! log mT’
1 x

for some constank” (depending om:, i, a,, andp). This implies

2k+p—1

My > K(3)< n )2“*”

for some constank’®). Plugging this into[[2Z12) and using Lemina2.18 completes the proof of

this case. [

Proofs of TheoremPZIT and TheoremZI2 These theorems now follow directly from Lem-

madZ2.1B and 2.19. O
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2.7.3 Proofs Relating to Sectioh 214

Lemma 2.20.Fori € N, letd; = §/(2i?) andmy,, = |Lin| + |Qin| (fOr i > \/Tﬂ define
Lin = Qi = 0). For eachn, let i, denote the smallest indeésatisfying the condition oh;,, in
step 3 of Algorithm 3. Let, = 2" and define
in =min{i € N: Vi >i,Vj > ,Vh € Cy(7,), erg,, (h) = 0},
and

Je =argminv; + &c (M, 95).
JeN

Then on the everft) Eg, s,
i=1

Vn € N, max {i,’;,%n} < g

Proof of Lemmal[Z.20. Continuing the notation from the proof of Lemia3.17, far NU{0},
let EZ(.Z andQ denote the set§ and(, respectively, in step 4 of Algorithm 2, when — 1 =
¢, when run with clas<;, label budgetn/(2i%)], confidence parametéf, and threshold as
in @8); if m — 1 is never/ during execution, then defing€ ’ = () andQ

Assume the everm1 E¢, 5, occurs. Suppose, for the sake of contradiction, jhatj < i

for somen € N. Then there is somé > ¢ — 1 such that, for somé < m,;,, we have some

h e Ci;—l('rn) N {h c Cz : 67“£(£)(h) = 0} but

ero(h)—miner,(h) > er(}) —heci:e% - ero(h) > 3¢ (LY0QY 5 £19) = 38¢,(¢,6,),

in

where the last equality is due to Lemia2.17. Lenimal2.16 implies this will not happen for

i =1i* — 1, so we can assume> i*. We therefore have (by Lemria2l16) that

38 (0,5;) < ero(H') — min ery(h) < g max {1, + vt — v, e (6.5) )

heC;

In particular, this implies that

w

~

SECi(mina 62) < Sé(cb(ga 52) <

N W

(Tn + Vix—1 — Vi) < (v —1).

DO

Therefore,
~ ~ Tn

gcj(m]‘n, 5]) -+ Vi S S(Ci(mm, 6@) + v S 5 (Tn + vy — VZ') + v S E + Vj.
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This would imply thatécj (Myjn,0;) < 7,/2 < m%n (due to the second return condition in Al-
gorithm 2), which by definition is not possible, so we have a contradiction. Therefore, we must
have that every; > . In particular, we have thatn € N, h;.,, # @.

Now pick an arbitrary € N withi > j = j*, and leth’ € C;(r,,). Then

< erm, (Rjn) — hme%c% erm,. (h)

< gmax {er(hjn) — v, &¢,(min, (51)} (LemmdZ.1b)

— gmax {er(hjn) — Vv + v — v, Ec, (Min, 52')}
(2(ermjn(hjn) — €T, (W) +70) + v — 14

< 3 .

5 max S(Cj (mjn, (Sj) + Vi —V;

éCi (min7 52)
\
,

A

3 acj (mjn, (Sj) + Vi —1; ) . »
= 5 max (sincej > )
éci (mim 5i)
\
= gec (Min, 0;) (by definition of ;)
- DEe(Lin U Qun, 0 L) (by LemmeZI)

Lemma 2.21.0n the even{ Eg, s,, Vn € N,
1=1

er(h

Proof of LemmalZZ]. Leth], € C.(7,) for 7, € (0,27"),n € N.
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er(hn) — Vao = er(h; ) — Voo

= Uy — Voo ter(h; ) — v
4

2(erp,.. (h; ) — 67’mj§n(h;z) + Ta)

Inm

IN

Vjx — Voo + 1NAX

A

Ec,. (Mjzn 0jz)
\ n

2(€Tﬁj;nUQj;;n(hinn) - 6rﬁj;nUQj;n(hj£")) + Tn)

IN

Vjx — Voo + 1NaAX

\ Ec,. (Mjzn, 053
The first inequality follows from LemmaZ1L6. The second inequality is due to Ledmmia 2.20 (i.e.,

j* > i*). Inthis last line, we can let, — 0, and using the definition af, show that it is at most

3. R
Vj; = Voo +max {2 (58% (Ljzn U Qjzns 0z ﬁj;;n)) e (Myn, 53';;)}

= I/j;; — Vo + Bé(cj;; (m];;n, 5];;) (Lemmm)
< 3min (yi — Vo + &, (i, &)) (by definition of;*)
< 3 min (I/i — Voo + éci(mm, 5,)) (LemmdZ.1b).

We are now ready for the proof of Theorems2.13andl2.14.

Proofs of TheoremZIB and TheoreniZ14These theorems now follow directly from Lem-

masZ2Zll anEZ19. Thatis, Lemma2.21 gives a bound in terms &f qo@ntities, holding on

event() Ec, s, and Lemm&Z.19 bounds thesquantities as desired, on eveNtHe, 5,NEc, s,-
i=1 i=1

Noting that, by the union bound, [ﬂ Hg, 5N ECZ.@} >1—>"7 6 >1— ¢ completes the
i=1

proof. ]

Defineé = ¢+ 1, D(e) = lim diam(C;(e)), and

J—00

Sm(6:) D (ée) . S (67)

Ue,(m,€,8;) = K | we,(m, D(ée)) +
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and

éci(m, ;) = inf {e >0:VY) € Z, ﬁci(m, 27.6;) < 2;‘-4} '

Lemma 2.22.For anym,+ € N,

Ec,(m, ;) < max {éci(m, 0i), Vi — I/OO} )

Proof of LemmalZ22. Fore > v; — v,

m m

Uci(m,e,csi) = K <¢Cl (m,ée) + \/Sm(&)dzam(Cl(ée)) i Sm, 52))

<K (wci(m, diam(C;(ce))) + \/ Sm<5i>di6:zl(<ci(5€)) . sm;léi)) .

But diam(C;(¢e)) < D(ée + (v; — vo)) < D(é¢), s0 the above line is at most

m m

K (wcl(m,f)(c"e)) + 5m(9:) D(é€) + Sm(éi)) = lo]ci(m, €,0;).

In particular, this implies that

Ec,(m,&;) = inf {e >0:VYj € Z, U, (m,2,5;) < 2j_4}
< inffe> (- va) V) € Ze, Uy (m, 2,0 <27}
< inffe> (- va) V) € Ze, Uy (m, 2,0 <274}
< max 1nf{e>0 Vg GZE,U(C (m, 27 5)<2j_4},(ui—uoo)}

{
BT

Ec,(m 1/00} )

Proof of TheoremZIH. By the same argument that leadfa{2.10), we have that



for some constank’, (depending om).
Now assume the evefy.”, Hc, 5, N Ec, s, occurs. In particular, LemnaZ]21 implies that

Vi,n € N,

er(hy) — v* < min {1, 3 min (2(14 — voo) + &, (min, 52)>}

ieN
< K3min ((VZ — V") + min {1, A}) ,
1€N Myn

Now takei € N. The label request bound of Lemiha2.18, along with Lerfamd 2.22, implies

for some constank’s.

that

2 ;2 Mip—1 dll 1l
1

< K50, max {(1/2- — VU )Mip, d; logz(mm) log %}

Let%(n) = /m. Then

d; log mini
4208 75— < K ((,/i Y

Myin,

+dilog (14 () exp {—62%(71)}) |

1+ 7i(n)
Yi(n)?

Thus,

d; log M :
min {1, L} < min {1,K7 (( )+ dylog (1 +%(t))€€6p{—02%(n)}) } .

Min,

The result follows from this by some simple algebra. O

2.8 Time Complexity of Algorithm 2

It is worth making a few remarks about the time complexity of Algorithm 2 when used with
the [2Z®) threshold. Clearly theHarN¢ subroutine could be at least as computationally hard
as empirical risk minimization (ERM) ovef. For most interesting hypothesis classes, this

is known to be NP-Hard — though interestingly, there are some efficient special cases [e.g.,
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Kalai, Klivans, Mansour, and Servedio, 2005]. Additionallyere is the matter of calculating
&.(6;C, £). The challenge here is due to the localizatidf; £) in the empirical Rademacher
process calculation and the empirical diameter calculation.

However, using a trick similar to that D_B.a.LLLe_LL_B.o.usqu.eLa.n.d_M.eudle son|[2005], we can

calculate or bound these quantities via an efficient reduction to minimizatiowefghtedem-

pirical error. That is, the only possibly difficult step in calculatiqﬁg(e; C, £) requires only

that we identifyh; = argmin er,,(h,§) andhy = argmin er,,(h, —¢), whereer,,(h,§) =
heCm(e;L) heCm(e; L)

LS IMXG) # &) ander,(h, =€) is the same but with-¢;.  Similarly, letting o, =

LEARNC(L, @) for £ U @ generated from the first unlabeled examples, we can bound

D,(e; C, £) within a factor of2 by 2er,, (1, h;) whereh/ = argmin  er,,(h, —h.) and

heCm (&L)
erm(f,g) = % S Lf(XG) # g(X;)]. All that remains is to specify how this optimization for

hi,hs,andh’ can be performed. Taking the case for example, we can solve the optimization as

follows. We find

m

hoy = argmin D UA(X) # &)+ Y AMh(x) # 9]+ Y 2max{1, \pm1[h(x) # g,

i=1 (z.)€Q (@,y)EL
where \ is a Lagrange multiplier; we can calculait@\) for O(m?) values of\ in a discrete
grid, and from these choose the one with smallest(’,), £) among those witlr g (h () —
ercug(he) < e. The third term guarantees the solution satisfigg /) = 0, while the value
of \ specifies the trade-off between, o (h(y)) ander,, (h), €). The calculation foh, andh/
is analogous. Additionally, we can clearly formulate thearN subroutine as such a weighted
ERM problem as well.

For each of these weighted ERM problems, a further polynomial reduction to (unweighted)
empirical risk minimization is possible. In particular, we can replicate the examples a number
of times proportional to the weights, generating an ERM problen®6m?) examples. Thus,
for processing any finite number of unlabeled exampteghe time complexity of Algorithm

2 (substituting the abov&-approximation forf)m(e; C, L), which only changes constant factors

in the results of Sectidn2.3.4) should be no more than a polynomial factor worse than the time
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complexity of empirical risk minimization witl€, for the worst case over all samples of size

O(m?).

2.9 A Refined Analysis of PAC Learning Via the Disagree-
ment Coefficient

Throughout this section, we will work iiRealizable(C) and denot® = D [X]. In particular,
there is always a target functighe C with er(f) = 0.

Note that the known general upper bound for this problem is that, if the VC dimension of
is d, then with probabilityl — ¢, every classifier ifC consistent withh random samples has error

rate at most
4dln(26n/d) +1n(4/9)
" :

(2.13)

This is due to Vapnik [1982]. There is a slightly different bound (for a different learning strategy)

of

o Llog(1/9) (2.14)

proven by.Ha.ussIﬂL_LLLLI.eslo.n.e_a.n.dJNamI\ th [1994]. It is also known that one cannot get a

distribution-free bound smaller than

o d + log(1/9)

n

for any concept space [Vap Lk_]_‘)82]. The question we are concerned with here is deriving upper
bounds that are closer to this lower bound than eifherk2.18) 01 (2.14) in some cases.

1080119 i the definition of the

For our purposes, throughout this section we will take-
disagreement coefficient. In particular, recall that< % always, and this will imply a fallback
guarantee no worse than those above for our analysis below. However, it is sometimes much
smaller, or even constant, in which case our analysis here may be better than those mentioned

above.
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2.9.1 Error Rates for Any Consistent Classifier

For simplicity and to focus on the nontrivial cases, the results in this section will be stated for
the case wher®(DI1S(C)) > 0. TheP(DIS(C)) = 0 case is trivial, since everfy € C has
er(h) = 0 there.

Theorem 2.23.Letd be the VC dimension of concept spéteand let
V., ={h € C:Vi<n,h(z;) = f(z;)}, wheref € C is the target function (i.e¢r(f) = 0),
and(xy, zo, ..., z,) ~ D" is a sequence of i.i.d. training examples. Then for &my(0, 1),

with probability> 1 — 6§, Vh € V,,,

24

n

er(h) <

(d In(8806,) + In %2) . (2.15)

Proof. SinceP(D1S(C)) > 0 by assumptiond; > 0 (andd > 0 also follows). As above, let
Vin = {h € C: Vi < m,h(z;) = f(z;)}, and defineradius(V;,) = supy¢y, er(h). We will
prove the result by induction an As a base case, note that the result clearly holds férd, as
we always haver(h) < 1.

Now suppose: > d + 1 > 2, and suppose the result holds for any< n; in particular,
considenn = |n/2]. Thus, for any € (0, 1), with probability> 1 — §/3,

24
radius(Vy,) < - <d In(8806;) + In ?) :

Note thatr, < r,,, SO we can take this inequality to hold for thedefined withr,, as well. If
P(DIS(V,,) < 2In2 < 21n 3, then [ZID) is valid (as i${Z116) below) sincedius(V,) <
radius(Vy,) < P(DIS(V,,)). Otherwise, by a Chernoff bound, with probabilityl — 6/3, we

have

{ Lty Tomsas - s 20} O DIS(Vi)| > B(DIS(Vin))[n/2]/2 =: N.
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ZI3) tells us that given this event, with probabilityl — 6/3,

radius(V,) = P(DIS(V,,))radius(V,|DIS(V,,))
1

Ad +hn

< 16 (dln efrradius(Vy,)n 12) .
n

SV,
< P(DIS(V,, ))% (dln@ tln B) <

: : 6 ( 2eP(DIS(V,,))n 12)

+1ln —

2d o

Applying the inductive hypothesis foudius(V,,) combined with a union bound over these

failure events (each of probability/3), we have that with probabilityy 1 — 4,

1 1 12
radius(V,) < ;6 <d In <4869f <ln (8806f) + 7 In %6)) In F) : (2.16)

If d > L1n 1%, then the right side of{216) is at most

% (d In (048¢1n (880 - 3 - ¢“0¢)) + In %2)
< 10 (d In (6,48 In (400086;)) + In 15—2)
n

16 » 12 _ 24 2
< (dln (260999f ) +In T) <d1n (8800;) + In F) .

n

Otherwised < 11n 1%, so that the right side o {Z116) is at most

16 1. 12 12
— (d In <9f4861n (880 - 36;) = 7 In 7) +1In F)

< 16 (d In (670593/2) +dln (

5
24 2
< z -
= (dln(3569f) + 5 < )ln )

The theorem now follows by the principle of induction. O

24 12
<— 1 In —
< <dn 8809f)+n6)

With this result in hand, we can immediately get some intergsesults, such as the follow-

ing corollary.
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Corollary 2.24. SupposeC is the space of linear separatorsdhdimensions that pass through
the origin, and suppose the distribution is uniform on the surface of the origin-centered unit
sphere. Then with probability 1 — 4, anyh € C consistent with the i.i.d. training examples

has (for some finite universa)

dlogd + log%
c—————2,

n

er(h) <

Proof. [Hannekel 2007b] proves thatp 6, < m/d for this problem. O
fec

This improves over the best previously known bound for cdestsclassifiers for this problem

in its dependence om, which wassc Y2/ DH0e0/0) 1 i and | ong, 2007] (though we picked

n

up an extrdog d factor in the process).

2.9.2 Specializing to Particular Algorithms

The above analysis is for arbitrary algorithms that select a classifier consistent with the training
data. However, we can modify the disagreement coefficient to be more interesting for more spe-
cific algorithms. Specifically, suppose there are €gtsuch that with high probability algorithm
A will output a classifier irC; when f is the target function. Then we only need to worry about
the regions of disagreement within th&Sgsets, which may be significantly smaller than within
the full spaceC.

To give a concrete example, consider the Closure algorithm: output ¢h€ with smallest
P(h(X) = +1) that is consistent with the data. For intersection-cloSedhe sets ar€; =
{h € C: h(zx) =+1= f(x) = +1}. So effectively, this becomes our concept space, and the
disagreement coefficient gfwith respect taC ; andD can be significantly smaller than it is with
respect to the full spac€. For instance, ifC is axis-aligned rectangles, then the disagreement
coefficient of anyf € C with respect taC; andD is at mostd. This implies a bound

~ dlogd + log(1/4)

n
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We already have better bounds than this for using Closure thithconcept space. How-
ever, if thed upper bound on disagreement coefficient with resped tas true for general

intersection-closed spac€s this would match the best known bounds for general intersection-

closed spaces 004].
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Chapter 3

Significance of the Verifiable/Unverifiable

Distinction in Realizable Active Learning

This chapter describes and explores a new perspective on the label complexity of active learning
in the fixed-distribution realizable case. In many situations where it was generally thought that
active learning does not help, we show that active learning does help in the limit, often with
exponential improvements in label complexity. This contrasts with the traditional analysis of
active learning problems such as non-homogeneous linear separators or depth-limited decision
trees, in which(2(1/¢) lower bounds are common. Such lower bounds should be interpreted
carefully; indeed, we prove that it is always possible to leara-gaod classifier with a number

of labels asymptotically smaller than this. These new insights arise from a subtle variation on
the traditional definition of label complexity, not previously recognized in the active learning

literature.

Remark 3.1. The results in this chapter are taken froLu_[_B_a.Iga.n_i:la.an_eke_a.n_dJALJr man, 2008],

joint work with Maria-Florina Balcan and Jennifer Wortman.
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3.1 Introduction

A number of active learning analyses have recently been proposed in a PAC-style setting, both for

the realizable and for the agnostic cases, resulting in a sequence of important positive and nega-

tive resultsi[Balcan et al., 2006, 2007, Cohn et al 94, Dasguptd, 2004, pta et al.,

005,2007, Hanneke a,b]. In particular, the most concrete noteworthy positive result for
when active learning helps is that of learning homogeneous (i.e., through the origin) linear

separators, when the data is linearly separable and distributed uniformly over the unit sphere,

and this example has been extensively analy?_ed_[.B.a.LQa.lI\ 2t all, 2006,12007 gupta, 2005,

Dasgupta et al., 2005, 2007]. However, few other positive results are known, and there are sim-

ple (almost trivial) examples, such as learning intervals or non-homogeneous linear separators

under the uniform distribution, where previous analyses of label complexities have indicated that

perhaps active learning does not help at pta, 2005].

In this work, we approach the analysis of active learning algorithms from a different angle.
Specifically, we point out that traditional analyses have studied the number of label requests
required before an algorithm can both produce-gwod classifieand prove that the classifier’s
error is no more thaa. These studies have turned up simple examples where this number is
no smaller than the number of random labeled examples required for passive learning. This is
the case for learning certain nonhomogeneous linear separators and intervals on the real line,
and generally seems to be a common problem for many learning scenarios. As such, it has led
some to conclude that active learnitiges not helfior most learning problems. One of the goals
of our present analysis is to dispel this misconception. Specifically, we study the number of
labels an algorithm needs to request before it can produeegand classifier, even if there is
no accessible confidence bound available to verify the quality of the classifier. With this type
of analysis, we prove that active learning can essentially always achieve asymptotically superior
label complexity compared to passive learning when the VC dimension is finite. Furthermore,

we find that for most natural learning problems, including the negative examples given in the
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Figure 3.1: Active learning can often achieve exponentigromements, though in many cases
the amount of improvement cannot be detected from information available to the learning algo-

rithm. Herey may be a target-dependent constant.

previous literature, active learning can achieve expongrhltiﬁnrovements over passive learning
with respect to dependence anThis situation is characterized in Figlrel3.1.
To our knowledge, this is the first work to address this subtle point in the context of active

learning. Though several previous papers have studied bounds on this latter type of label com-

plexity K, 20077, Dasgupta etlal., 2005, 12007], their resultsneestonger

than the results one could prove in the traditional analysis. As such, it seems this large gap

between the two types of label complexities has gone unnoticed until now.

3.1.1 A Simple Example: Intervals

To get some intuition about when these types of label complexity are different, consider the
following example. Suppose thét is the class of all intervals oved, 1] and D is a uniform
distribution over{0, 1]. If the target function is the empty interval, then for any sufficiently small

¢, in order toverify with high confidence that this (or any) interval has erork, we need to
request labels in at least a constant fraction of(¥ie/¢) intervals|0, 2¢], [2¢, 4¢], . . ., requiring
2(1/e) total label requests.

lwe slightly abuse the term “exponential” throughout the chapter. In particular, we refer tolaiyg(1/¢) as

being an exponential improvement ovgf.
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However, no matter what the target function is, we @ad an e-good classifier with only
a logarithmic label complexity via the following extremely simple 2-phase learning algorithm.
The algorithm will be allowed to makelabel requests, and then we will find a value dfat is
sufficiently large to guarantee learning. We start with a lafy@)) set of unlabeled examples.
In the first phase, on each round we choose a poumiformly at random from the unlabeled
sample and query its label. We repeat this until we either obsesvelabel, at which point we
enter the second phase, or we use &bel requests. In the second phase, we alternate between
running one binary search on the examples betviesnd thatz and a second on the examples
between that: and 1 to approximate the end-points of the interval. Once we use lalbel

requests, we output a smallest interval consistent with the observed labels.

If the targeth* labels every point as-1 (the so-calledll-negativefunction), the algorithm
described above would output a hypothesis wittrror even aftef label requests, so ary> 0
suffices in this case. On the other hand, if the target is an interMal C [0, 1], whereb — a =
w > 0, then after roughly)(1/w) queries (a constant number that depends only on the target), a
positive example will be found. Since oniy(log(1/¢)) additional queries are required to run the
binary search to reach error ratét suffices to have > O(1/w+log(1/¢)) = O(log(1/¢)). Soin
general, the label complexity is at worStlog(1/¢)). Thus, we see a sharp distinction between
the label complexity required thind a good classifier (logarithmic) and the label complexity

needed to both find a good classifaerd verifythat it is good.

This example is particularly simple, since there is effectively mmg“hard” target function
(the all-negative target). However, most of the spaces we study are significantly more complex
than this, and there are generally many targets for which it is difficult to achieve good verifiable

complexity.
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3.1.2 Our Results

We show that in many situations where it was previously believed that active learning cannot

help, active learning does help in the limit. Our main specific contributions are as follows:

e We distinguish between two different variations on the definition of label complexity. The
traditional definition, which we refer to agrifiable label complexityfocuses on the num-
ber of label requests needed to obtain a confidence bound indicating an algorithm has
achieved at mosterror. The newer definition, which we refer to simplylalsel complex-
ity, focuses on the number of label requests before an algorithm actually achieves at most
e error. We point out that the latter is often significantly smaller than the former, in con-
trast to passive learning where they are often equivalent up to constants for most nontrivial

learning problems.

¢ We prove thatnydistribution and finite VC dimension concept class has active learning
label complexity asymptotically smaller than the label complexity of passive learning for
nontrivial targets. A simple corollary of this is that finite VC dimension impl€s/e)

active learning label complexity.

e We show it is possible to actively learn with arponential rate variety of concept classes
and distributions, many of which are known to require a linear rate in the traditional anal-
ysis of active learning: for example, intervals n1] and non-homogeneous linear sepa-

rators under the uniform distribution.

e \We show that even in this new perspective, there do exist lower bounds; it is possible to
exhibit somewhat contrived distributions where exponential rates are not achievable even
for some simple concept spaces (see Thedren 3.11). The learning problems for which
these lower bounds hold are much more intricate than the lower bounds from the traditional
analysis, and intuitively seem to represent the core of what makes a hard active learning

problem.
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3.2 Background and Notation

In various places throughout this chapter, we will need notation émuatable dense subseft

a hypothesis clasg. For any set of classifiefi§, we will denote byl a countable (or possibly

finite) subset of/” s.t. Voo > 0, Vh € V, 31’ € V with Pp 12 (h(X) # I'(X)) < a. Such

a set is guaranteed to exist under mild conditions; in particular, finite VC dimension suffices to

guarantee its existence. We introduce this notion to avoid certain degenerate behaviors, such as

whenDIS(B(h,0)) = X. For instance, the hypothesis class of classifiers on0thg interval

that label exactly one point positive has this property under any nonatomic density function.
Since all of the results in this chapter are for the fixed-distribution realizable case, it will be

convenient to introduce the following short-hand notation.

Definition 3.1. AfunctionA(e, 6, h*) is alabel complexityfor a pair (C, D) if there exists an
active learning algorithmA achieving label complexit(e, §, Dxy) = A(e, 6, h*p,.,.) for all
Dxy € Realizable(C, D), whereD is a distribution overt’ andh*p, . is the target function

underDxy-.

Definition 3.2. A functionA(e, 6, h*) is averifiable label complexityor a pair (C, D) if there
exists an active learning algorithpd achieving verifiable label complexity

A(€,6,Dxy) = A(e, 0, h*p,, ) for all Dxy € Realizable(C, D), whereD is a distribution over

X andh*p,, is the target function undeP .

Let us take a moment to reflect on the difference between theléfinitions of label com-
plexity: namely, verifiable and unverifiable. The distinction may appear quite subtle. Both
definitions allow the label complexity to depend both on the target function and on the input dis-
tribution. The only distinction is whether or not there isautessible guarantear confidence
boundon the error of the chosen hypothesis that is also at mo$his confidence bound can
only depend on quantities accessible to the learning algorithm, suchasetheested labels. As
an illustration of this distinction, consider again the problem of learning intervals. As described

above, if the target* is an interval of widthw, then after seein@(1/w +log(1/¢)) labels, with
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high probability it is possible for an algorithm guaranteethat it can output a function with
error less than. In this case, for sufficiently smadl| the verifiable label complexity (e, d, h*)
is proportional tdog(1/¢). However, ifh* is the all-negative function, then the verifiable label
complexity is at least proportional 10 ¢ for all values ofe becausa high-confidence guarantee
can never be madeithout observing2(1/¢) labels; for completeness, a formal proof of this fact
is included in Sectiof3l7. In contrast, as we have seen, the label complexitioig1/¢)) for
anytarget in the class of intervals when no such guarantee is required.

A common alternative formulation of verifiable label complexity is to fetake e as an

argument and allow it to choose online how many label requests it needs in order to guarantee

error at most [Dasguptal, 2005]. This alternative definition is almost equivalent (an algorithm

for either definition can be modified to fit the other definition without significant loss in the
verifiable label complexity values), as the algorithm must be able to produce a confidence bound
of size at most on the error of its hypothesis in order to decide when to stop requesting labels

anywa

3.2.1 The Verifiable Label Complexity

To date, there has been a significant amount of work studying the verifiable label complexity

(though typically under the aforementioned alternative formulation). It is clear from standard re-

sults in passive learning that verifiable label complexitie® 0fd/¢) log(1/¢) + (1/¢€) log(1/9))

are easy to obtain for any learning problem, by requesting the labels of random examples. As

such, there has been much interest in determining when it is possible to achieve verifiable la-
°There is some question as to what the “right” formal model of active learning is in general. For instance, we

could instead letA generate an infinite sequence /af hypotheses (ofh., ¢;) in the verifiable case), wher,

can depend only on the firstlabel requests made by the algorithm along with some initial segment of unlabeled

examples (as irL.[Castro and Nowak, 2007]), representing the case where we are not sure a-priori of when we will

stop the algorithm. However, for our present purposes, such alternative models are equivalent in label complexity

up to constants.
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bel complexitysmaller than this, and in particular, when the verifiable label complexity is a
polylogarithmic function ofl /e (representing exponential improvements over passive learning).
As discussed in previous chapters, there have been a few quantities proposed to measure

the verifiable label complexity of active learning on any given concept class and distribution.

Dasgupta’'splitting index[Dasgupta, 2005], which is dependent on the concept class, data dis-

tribution, target function, and a parameterquantifies how easy it is to make progress toward

reducing the diameter of the version space by choosing an example to query. Another quantity

to which we will frequently refer is theisagreement coefficie 2| 2007b], defined in

ChaptefR.

The disagreement coefficient is often a useful quantity for analyzing the verifiable label com-
plexity of active learning algorithms. For example, as we saw in ChBpter 2, Algorithm 0 achieves
a verifiable label complexity at mo&t-d - polylog(1/(ed)) when run with hypothesis clagsfor
target functiom* € C. We will use it in several of the results below. In all of the relevant results
of this chapter, we will simply take, = 0 in the definition of the disagreement coefficient.

We will see that both the disagreement coefficient and splitting index are also useful quantities

for analyzing unverifiable label complexities, though their use in that case is less direct.

3.2.2 The True Label Complexity

This chapter focuses on situations where true label complexities are significantly smaller than
verifiable label complexities. In particular, we show that many common pé&ir®) have
label complexity that is polylogarithmic iboth 1/e and 1/§ and linear only in some finite

target-dependent constant.. This contrasts sharply with the infamoué lower bounds men-

tioned above, which have been identified for verifiable label complexity [Dasgupta, 2004, 2005,

,_JQJQ'? Hanneke, 2007a]. The implication is that, for any fixed targaich lower

Freund et &

bounds vanish as approache$. This also contrasts with passive learning, whefe lower

bounds are typically unavoidable [Antos and Lu L_si_L998].
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Definition 3.3. We say tha{C, D) is actively learnable at an exponential riftthere exists an

active learning algorithm achieving label complexity

A<€7 0, h*> ="p+ - polylog (1/(€5>)

for all h* € C, wherey,- is a finite constant that may depend whand D but is independent of

eandd.

3.3 Strict Improvements of Active Over Passive

In this section, we describe conditions under which active learning can achieve a label complexity
asymptotically superior to passive learning. The results are surprisingly general, indicating that
whenever the VC dimension is finite, essentialhypassive learning algorithm is asymptotically

dominatedoy an active learning algorithm @il targets.

Definition 3.4. AfunctionA(e, 6, h*) is apassive learningabel complexity for a pai({C, D) if
there exists an algorithm (((x1, h*(x1)), (z2, h*(22)), . . ., (z, h*(x))), 0) that outputs a
classifierh, s, such that for any target functio € C, e € (0,1/2),9 € (0, 1), for any

t > A(e, 6, h*),

Pp(er(hes) <€) >1—24.
Thus, a passive learning label complexity corresponds tataicgon of an active learning

label complexity to algorithms that specifically request the firkbels in the sequence and

ignore the rest. In particular, it is known that for any finite VC dimension class, there is always

anO (1/¢) passive learning label complexity [Haussler etlal., 1994]. Furthermore, this is often

(though not always) tight, in the sense that for any passive algorithm, there exist targets for which

the corresponding passive learning label complexitf (¢ /¢) [Antos and Lugosi, 1998]. The
following theorem states that for any passive learning label complexity, there exists an achievable
active learning label complexity with a strictly slower asymptotic rate of growth. Its proof is
included in Sectioi-311.

Remark 3.2. This result is superceded by a stronger result in Chalpter 4; however, the result in
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Chapterf® is proven for a different algorithm, so that Theok&#h is not entirely redundant. |
have therefore chosen to include the result, since the construction of the algorithm may be of

independent interest, even if the stated theorem is itself weaker than later results.

Theorem 3.5. SupposeC has finite VC dimension, and [&tbe any distribution ot’. For any
passive learning label complexity, (e, 6, k) for (C, D), there exists an active learning
algorithm achieving a label complexity, (¢, d, ) such that, for alb € (0,1/4) and targets

h* € C for which A, (e, 6, h*) = w(1),

Ao(€,6,h%) =0 (A, (e/4,6,h7)).

In particular, this implies the following simple corollary.

Corollary 3.6. For anyC with finite VC dimension, and any distributi@hover X, there is an

active learning algorithm that achieves a label complexity, 6, »*) such that fors € (0,1/4),

Ae, 0, h*) =o(1/e)

for all targetsh € C.

Proof. Let d be the VC dimension of. The passive learning algorithm of Haussler, Little-

stone & Warmuth [[Haussler et al|_1$94] is known to achieve a label complexity no more than

(kd/e)log(1/4), for some universal constaht< 200. Applying Theoreniz315 now implies the

result. O

Note the interesting contrast, not only to passive learrbngalso to the known results on the
verifiablelabel complexity of active learning. This theorem definitively states thaf)thi/¢)
lower bounds common in the literature on verifiable label complexity rearer arise in the

analysis of the true label complexity of finite VC dimension classes.
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3.4 Decomposing Hypothesis Classes

Let us return once more to the simple example of learning the class of interval® ovemder

the uniform distribution. As discussed above, it is well known that the verifiable label complexity
of the all-negative classifier in this class{¥1/¢). However, consider the more limited class

C’ c C containing only the intervals of width wy, strictly greater than 0. Using the simple
algorithm described in Secti@n3.11.1, this restricted class can be learned with a (verifiable) label
complexity of onlyO(1/w;, + log(1/e€)). Furthermore, the remaining set of classifi€rs =

C\ C’ consists of only a single function (the all-negative classifier) and thus can be learned with
verifiable label complexity). Here we have thaf can be decomposed into two subclasgés
andC”, where both(C’, D) and (C”, D) are learnable at an exponential rate. It is natural to
wonder if the existence of such a decomposition is enough to implyGhiself is learnable at

an exponential rate.

More generally, suppose that we are given a distribufioand a hypothesis clags such
that we can construct a sequence of subcla€sesith label complexityA; (e, 9, h), with C =
U2, C;. Thus, if we knewa priori that the targef.* was a member of subclags, it would be
straightforward to achievg; (¢, 6, h*) label complexity. It turns out that it is possible to leamy
targeth* in anyclassC; with label complexity onlyO(A;(e/2,46/2, h*)), even without knowing
which subclass the target belongs to in advance. This can be accomplished by using a simple
aggregation algorithm, such as the one given below. Here a set of active learning algorithms

(for example, multiple instances of Dasgupta’s splitting algoritlhm_[.[lasglmia, 2005] or CAL) are

run on individual subclassés; in parallel. The output of one of these algorithms is selected

according to a sequence of comparisons.

Using this algorithm, we can show the following label complexity bound. The proof appears

in Sectior3.B.
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Algorithm 1 Algorithm 4 : The Aggregation Procedure. Here it is assumedGhat U, C,,

and that for each, A; is an algorithm achieving label complexity at maste, 9, i) for the pair

(C;, D). Both the main aggregation procedure and each algorithtake a number of labels

and a confidence parameteas parameters.

Let k be the largest integer sk? [721n(4k/6)] < t/2
fori=1,...,kdo

Let ; be the output of running\;(|¢/(44%) ], 4/2) on the sequencgrs, 1122,

end for
fori,j € {1,2,...,k} do
if Pp(hi(x) # h;(z)) > 0then

Let R;; be the firs§ 72 In(4%/0)| elements: in the sequenc@r,, }02, S.t. hi(x) # h;(z)

Request the labels of all examplesky),

Let m,; be the number of elements i, on whichh, makes a mistake

else
Letm;; =0
end if
end for

Returni, — h; wherei — argmin  max _my
i€{1,2,..., k} 7€{1,2,....k}

Theorem 3.7.For any distributionD, letC,, C,, . . . be a sequence of classes such that for ¢

i, the pair(C;, D) has label complexity at moat(¢, 6, 1) for all h € C;. LetC = U2, C;. Then

(C, D) has a label complexity at most

4r}r11i8 max {42’2 [Ai(e/2,0/2,h)], 2 [72 In
1:hel;

foranyh € C. In particular, Algorithm 4 achieves this when given as input the algoritdms

that each achieve label complexity(e, , h) on class(C;, D).

il

rach

A patrticularly interesting implication of Theordm B.7 is thlae ability to decompos€ into
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a sequence of classé€s with each pair(C;, D) learnable at an exponential rate is enough to
imply that(C, D) is also learnable at an exponential rate. Sincevdrdiablelabel complexity

of active learning has received more attention and is therefore better understood, it is often be
useful to apply this result when there exist known bounds on the verifiable label complexity; the
approach loses nothing in generality, as suggested by the following theorem. The proof of this

theorem. is included in Secti@n B.9.

Theorem 3.8.For any (C, D) learnable at an exponential rate, there exists a sequence
Cy, Cy, ... with C = U, C,;, and a sequence of active learning algorithrs A,, . . . such that
the algorithmA; achievewerifiablelabel complexity at mosy;polylog; (1/(ed)) for the pair

(C;, D), wherey; is a constant independent ©&ndo. In particular, the aggregation algorithm

(Algorithm 4') achieves exponential rates when used with these algorithms.

Note that decomposing a givéhinto a sequence @f; subsets that have good verifiable label
complexities is not always a simple task. One might be tempted to think a simple decomposi-
tion based on increasing values of verifiable label complexity with respd€i, t®) would be
sufficient. However, this is not always the case, and generally we need to use information more
detailed than verifiable complexity with respect(td, D) to construct a good decomposition.

We have included in Sectidn 3110 a simple heuristic approach that can be quite effective, and in
particular yields good label complexities for evéfy, D) described in Sectidn3.5.

Since it is more abstract and allows us to use known active learning algorithms as a black
box, we frequently rely on the decompositional view introduced here throughout the remainder

of the chapter.

3.5 Exponential Rates

The results in Sectidn 3.3 tell us that the label complexity of active learning can be made strictly
superior to any passive learning label complexity when the VC dimension is finite. We now ask

how much better that label complexity can be. In particular, we describe a number of concept

67



classes and distributions that are learnable ax@onentialrate, many of which are known to

requireQ)(1/e) verifiablelabel complexity.

3.5.1 Exponential rates for simple classes

We begin with a few simple observations, to point out situations in which exponential rates
are trivially achievable; in fact, in each of the cases mentioned in this subsection, the label
complexity is actuallyO(1).

Clearly if |X'| < oo or |C| < oo, we can always achieve exponential rates. In the former case,
we may simply request the label of everyn the support ofD, and thereby perfectly identify
the target. The corresponding= |X|. In the latter case, Algorithm O can achieve exponential
learning withy = |C| since each queried label will reduce the size of the version space by at
least one.

Less obvious is the fact that a similar argument can be applied tacaumytably infinite
hypothesis clas€. In this case we can impose an orderingh,, - - - over the classifiers ift,
and setC; = {h;} for all i. By Theoreni:3l7, applying the aggregation procedure to this sequence
yields an algorithm with label complexity(e, d, k;) = 2i? [721n(4i/6)] = O(1).

3.5.2 Geometric Concepts, Uniform Distribution

Many interesting geometric conceptsift are learnable at an exponential rate if the underlying
distribution is uniform on some subset &f'. Here we provide some examples; interestingly,
every example in this subsection has some targets for whichethiable label complexity is

Q2 (1/e). As we see in Section3.5.3, all of the results in this section can be extended to many

other types of distributions as well.

Unions of k intervals under arbitrary distributions: Let X' be the interval0, 1) and letC®)

denote the class of unions of at mdsintervals. In other wordsC(*) contains functions de-
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scribed by a sequencey, a;, - - - , as), Wwhereay = 0, a, = 1, ¢ < 2k + 1, anday, - - - , a, is the
(nondecreasing) sequence of transition points between negative and positive segmetigs (SO
labeled+1 iff x € [a;,a,41) for someodd ). For any distribution, this class is learnable at an
exponential rate by the following decomposition argument. First, défirte be the set contain-

ing the all-negative function along with any functions that are equivalent given the distribution

D. Formally,

C,={hecCW . PhX)=+1)=0}.

ClearlyC, has verifiable label complexity. Fori = 2,3, ...,k + 1, letC; be the set containing
all functions that can be represented as unions-efl intervals but cannot be represented as

unions of fewer intervals. More formally, we can inductively define eachs
Ci={heC®: a0 e CYst.P(h(X)#H(X))=0}\U;jwC;.

Fori > 1, within each subclas€§;, for eachh € C; the disagreement coefficient wit; is
bounded by something proportional o+ 1/w(h), wherew(h) is the weight of the smallest
positive or negative interval with nonzero weight. Thus running Algorithm 0 Wittachieves
polylogarithmic (verifiable) label complexity for anly € C;. SinceC*) = U!C;, by Theo-

rem37,C%) is learnable at an exponential rate.

Ordinary Binary Classification Trees: Let X be the cubg0, 1|, D be the uniform distribution

on X, andC be the class of binary decision trees using a finite number of axis-parallel splits

(see e.g., Devroye et t al., 1996], Chapter 20). In this case, in the same spirit as

the previous example, we |€1; be the set of decision trees @hdistance zero from a tree with
i leaf nodes, not contained in afy; for j < i. For any:, the disagreement coefficient for any
h € C; (with respect toC;, D)) is a finite constant, and we can chodgto have finite VC
dimension, so eactC;, D) is learnable at an exponential rate (by running Algorithm 0 With

By Theorenf317(C, D) is learnable at an exponential rate.
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Linear Separators

Theorem 3.9.LetC be the concept class of linear separatorsiidimensions, and | be the

uniform distribution over the surface of the unit sphere. The (@irD) is learnable at an

exponential rate.

Proof. There are multiple ways to achieve this. We describe here a simple proof that uses a de-
composition as follows. Lex(h) be the probability mass of the minority class under hypothesis

h. Let C; be the set containing only the separatomsith A\(h) = 0, letCy = {h € C: A(h) =
1/2},and letC; = C\ (C; U C,). As before, we can use a black box active learning algorithm
such as CAL to learn within the clag%. To prove that we indeed get the desired exponential
rate of active learning, we show that the disagreement coefficient of any sepgarat@y with
respect to/Cs, D) is finite. The results concerning Algorithm 0 from Chagier 2 then immedi-

ately imply thatC; is learnable at an exponential rate. Siricetrivially has label complexity

Zhang,
rlln.eke, 2007b] combined with

1, and(C,, D) is known to be learnable at an exponential rate [

)

007, 2005, Dasgupta, Kalai, and Monteleoni,

Theoren33J7, this would imply the result.
Below, we will restrict the discussion to hypothese£’iny which will be implicit in notation
such asB(h, ), etc. First note that, to shotly, < oo, it suffices to show that

li DPISBR)) (3.1)

r—0 r

so we will focus on this.

For anyh, there exists;, > 0s.t. Vi’ € B(h,r),P(W(X) = +1) < 1/2 & P(h(X) =
+1) < 1/2, or in other words the minority class is the same amondi/ak B(h,r). Now
consider anys’ € B(h,r) for 0 < r < min{ry, A(h)/2}. ClearlyP(h(X) # h'(X)) > |\(h) —
A(R)|. Supposéi(z) = sign(w - x 4+ b) andh’(xz) = sign(w’ - x + ') (where, without loss,
we assuméw|| = 1), anda(h,h’) € [0,7] is the angle between andw’. If a(h,h') =
0 or if the minority regions ofh and /' do not intersect, then clearj(h(X) # h'(X)) >

%’h') min{\(h), A\(h')}. Otherwise, consider the classifiénis:) = sign(w-z+b) andh/(z) =
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Figure 3.2: Projection of and /’ into the plane defined by andw’.

sign(w’ - x + V'), whereb and b’ are chosen s.tP(h(X) = +1) = P(#(X) = +1) and

A(R) = min{\(h), \(W)}. Thatis,h andh’ are identical toh andh’ except that we adjust the
bias term of the one with larger minority class probability to reduce its minority class probability
to be equal to the other’s. If # h, then most of the probability mass @f : h(x) # h(z)} is
contained in the majority class region f(or vice versa ifh’ # h'), and in fact every point in

{x: h(x) # h(z)} is labeled byh according to the majority class label (and similarly féand

h"). Therefore, we must haw&(h(X) # h'(X)) > P(h(X) # W (X)).

We also have thab(h(X) # h'(X)) > 22&"\(R). To see this, consider the projection
onto the2-dimensional plane defined hy andw’, as in Figurd-3.5]2. Because the two decision
boundaries must intersect inside the acute angle, the probability mass contained in each of the
two wedges (both with.(h, h') angle) making up the projected region of disagreement betiveen
andh’ must be at least am(h, ') /7 fraction of the total minority class probability for the respec-
tive classifier, implying the union of these two wedges has probability mass aﬁ‘fgp’éﬂ(ﬁ).
Thus, we havé(h(X) # /(X)) > max{|)\(h) — (R, Mmm{x(h),A(h')}}. In par-
ticular,

2a(h, )

B(h,r) C {h/ : max{|)\(h) Y min{ \(h), A(h/)}} < r} .

The region of disagreement of this set is at most
DIS ({h’ : M(A(h) —r) < rAINR) = AR <7
s

C DISH{K : w' = wANR)=A(R)| < rHUDISHR = alh, b)) < mr/AR)AAR)—AR)| = 1)),
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where this last line follows from the following reasoning k&a,,,; to be the majority class of
h (arbitrary if \(h) = 1/2). For anyh’ with |[\(h) — A(R')| < r, theh” with a(h, h") = a(h, h')
havingP(h(X) = ymaj) — P(R"(X) = yma;) = r disagrees witth on a set of points containing
{x: W (x) # h(z) = yma, }; likewise, the one havinB(h(X ) = Yma;) —P(R"(X) = Ymas) = —7
disagrees witth on a set of points containinge : 1/(z) # h(xz) = —Ymq;}- SO any point in
disagreement betweénand somée’ with |\(h) — A(R')| < r anda(h,h’) < 7r/A(h) is also
disagreed upon by sont with |A(k) — A(R")| = r anda(h, ") < 7r/A(h).

Some simple trigonometry shows thaf S({»' : a(h,h') < 7r/A(h) A|NR) = A(R)| =71})
is contained in the set of points within distange(rr/A(h)) < 7r/X of the two hyperplanes
representing; () = sign(w - x + by) andhsy(x) = sign(w - = + by) defined by the property that

A(hy) — A(h) = A(h) — A(he) = r, SO that the total region of disagreement is contained within

{z: hi(x) # ho(x)} U{z: min{|w -z + b|, |w -z + by|} < 7wr/A(h)}.

Clearly,P({z : hi(x) # ho(x)}) = 2r. Using previous results [Balcan et al., 2006, Hanheke,

007b], we know thaP({z : min{|w - = + by, |w - x + by|} < 7r/A(h)}) < 27y/nr/X(h)

(since the probability mass contained within this distance of a hyperplane is maximized when the
hyperplane passes through the origin). Thus, the probability of the entire region of disagreement
is at most(2 + 27+/n/A(h))r, so that[[(311l) holds, and therefore the disagreement coefficient is

finite. OJ

3.5.3 Composition results

We can also extend the results from the previous subsection to other types of distributions and

concept classes in a variety of ways. Here we include a few results to this end.

Close distributions: If (C, D) is learnable at an exponential rate, then for any distribuon
such that for all measurablé C X', \Pp(A) < Pp/(A) < (1/N)Pp(A) for some € (0, 1],

(C,D’) is also learnable at an exponential rate. In particular, we can simply use the algorithm
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Figure 3.3:lllustration of the proof of Theorefd3110. The dark gray regions repre3gnth,, 2r) and
Bp,(he,2r). The functionh that gets returned is in the intersection of these. The light gray regions
representByp, (hi,€/3) and Bp, (ha,€/3). The target functiom* is in the intersection of these. We

therefore must have < ¢/3, and by the triangle inequalityr (1) < e.

for (C, D), filter the examples fron®’ so that they appear like examples frdm and then any
t large enough to find ae\-good classifier with respect 1 is large enough to find atgood

classifier with respect t®'.

Mixtures of distributions: Suppose there exist algorithnlg and A, for learning a clas§ at

an exponential rate under distributiofs and D, respectively. It turns out we can also learn
under anymixture of D; andD, at an exponential rate, by usind; and. A, as black boxes.

In particular, the following theorem relates the label complexity under a mixture to the label

complexities under the mixing components.

Theorem 3.10.LetC be an arbitrary hypothesis class. Assume that the géir$, ) and

(C, D,) have label complexitie& (¢, §, h*) and As(¢, d, h*) respectively, wher®, andD, have
density function®rp, andPrp, respectively. Then for any € [0, 1], the pair

(C,aD; + (1 — «)D,) has label complexity at most

2 [max{A1(e/3,6/2,h*), Ao(e/3,/2, h*)}].

Proof. If & = 0 or 1 then the theorem statement holds trivially. Assume insteactkat0, 1).
We describe an algorithm in terms®@f D,, andD,, which achieves this label complexity bound.

Suppose algorithmgl; and A, achieve the stated label complexities un@grand D, re-
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spectively. At a high level, the algorithm we define works bytéfing” the distribution over
input so that it appears to come from two streams, one distributed accordihg &md one dis-
tributed according t@,, and feeding these filtered streams4pand.A; respectively. To do so,
we define a random sequeneg u,, - - - of independent uniform random variablegin1]. We

then runA; on the sequence of examplesfrom the unlabeled data sequence satisfying

aPrp, (z;)

Ui < aPrp, (z;) + (1 — «)Prp, (z;)’

and run4, on the remaining examples, allowing each to make an equal number of label requests.
Let h; andh, be the classifiers output byt; and.A,. Because of the filtering, the examples
that. A, sees are distributed accordingf, so aftert/2 queries, the current error &f; with
respect toD; is, with probabilityl — ¢/2, at mostinf{e’ : A;(¢/,6/2,h*) < t/2}. A similar
argument applies to the error bf with respect tdD;.
Finally, let
r =inf{r : Bp, (h1,7) N Bp,(ha, 1) # 0} ,

where

Bp,(hi,r) ={h € C: Prp,(h(x) # h;y(x)) <r}.

Define the output of the algorithm to be ahye Bp, (hy,2r) N Bp,(hy, 2r). If a total oft >
2 [max{A1(e/3,5/2,h*), Aa(e/3,9/2, h*)}| queries have been madg® by .4, andt/2 by As,),
then by a union bound, with probability at ledst 4, h* is in the intersection of the/3-balls,
and soh is in the intersection of thee/3-balls. By the triangle inequality; is within e of h*
under both distributions, and thus also under the mixture. (See Higlre 3.3 for an illustration of

these ideas.) O

3.5.4 Lower Bounds

Given the previous discussion, one might suspect dngtpair (C, D) is learnable at an expo-

nential rate, under some mild condition such as finite VC dimension. However, we show in the
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Figure 3.4: A learning problem where exponential rates atedlsievable. The instance space
is an infinite-depth tree. The target labels nodes along a single infinite path asd labels all
other nodes-1. For any¢(e) = o(1/¢), when the number of children and probability mass of
each node at each subsequent level are set in a certain way, label complexitigs Ofare not

achievable for all targets.

following that this isnot the case, even for some simple geometric concept classes when the

distribution is especially nasty.

Theorem 3.11.For any positive functiom(¢) = o(1/¢), there exists a paifC, D), with the VC
dimension ofC equall, such that for any achievable label complexiti¢, §, h) for (C, D), for
anyo € (0,1/4),

Jh € Cs.t.A(e, 8, h) # o(p(e€)).

In particular, takingo(e) = 1/+/€ (for example), this implies that there existé@ D) that is

not learnable at an exponential rate (in the sense of Definifigh 3.3).

Proof. If we can prove this for any suah(e) # O(1), then clearly this would imply the result
holds for¢(e) = O(1) as well, so we will focus o (e) # O(1) case. Lefl” be a fixed infinite
tree in which each node at depithasc; children; ¢; is defined shortly below. We consider
learning the hypothesis clagswhere eacth € C corresponds to a path down the tree starting
at the root; every node along this path is labeleghile the remaining nodes are labeled.
Clearly for eachh € C there is precisely one node on each level of the tree laletgdh (i.e.
one node at each deptlf).has VC dimension 1 since knowing the identity of the node labeled
on leveli is enough to determine the labels of all nodes on levels. , i perfectly. This learning

problem is depicted in Figute_3.4.
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Now we defineD, a “bad” distribution forC. Let{/;}3°, be any sequence of positive numbers
s.t. >°, ¢; = 1. ¢; will bound the total probability of all nodes on levelaccording toD.
Assume all nodes on levéhave the same probability according®pand call thisp,;. We define
the values op,; andc; recursively as follows. For each> 1, we definep; as any positive number
s.t. pi[o(pi)] H;;% ¢; < ¢;andg(p;) > 4, and define;;,_; = [¢(p;)]. We are guaranteed that
such a value op; exists by the assumptions thate) = o(1/¢), meaningim,._.o e¢(e) = 0, and

thatg(e) # O(1). Lettingpy = 1 — 3", p: [[/—, ¢; completes the definition ab.

With this definition of the parameters above, sifcep;, < 1, we know that for any, > 0,
there exists some < ¢, such that for some level, p; = e and thusc;_; > ¢(p;) = ¢(e).
We will use this fact to show thak ¢(¢) labels are needed to learn with error less thdor
these values of. To complete the proof, we must prove the existence of a “difficult” target
function, customized to challenge the particular learning algorithm being used. To accomplish
this, we will use the probabilistic method to prove the existence of a point in eachi lsueh
that any target function labeling that point positive would have a label complexityp;)/4.

The difficult target function simply strings these points together.

To begin, we definec, = the root node. Then for each> 1, recursively definer; as
follows. Suppose, for any, the setR), and the classifieli,, are, respectively, the random variable
representing the set of examples the learning algorithm would request, and the classifier the
learning algorithm would output, whenis the target and its label request budget is set+o
|o(p:)/2]. Forany node;, we will let Children(x) denote the set of children of and Subtregr)

denote the set of along with all descendants af Additionally, leth, denote any classifier in
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Cst. h,(x) = +1. Now note that

eomax - nf | P{Pp(A(X) # ha(X)) > pi}
D inf  P{Pp(h(X) # hn(X)) > pi}

Ci_ heC:h(z)=+1
=1 sechildren(z;_1) @)

1 R
> - > P{VheC:h(x)=+1,Subtreér) N Ry, = ) APp(h(X) # hn(X)) > p;}
=1 sechildren(z;_1)

_g |t Z 1[vh e C:h(z) = +1,Pp (h(X) £ (X)) > pi

C;—
=1 Lechildren(z;_ 1 ):Subtreg¢z)NRy,, =0

1
>E min E Iz’ # x]
_:c’eChndrer(xi,l) Ci-1 zeChildren(z; 1 ):Subtre¢z)N Ry, , =0
1 1 1
i1 —t—1) = i)] — i)/2] —1) >
(G —t=1) o] (Lo(pi)] = Lo(pi)/2] = 1) = 0]

The expectations above are over the unlabeled examples and any internal random bits used by the

>

([o(pi)]/2 1) = 1/4.

algorithm. The above inequalities imply there exists same Children(z;_;) such that every
h € C that hash(z) = +1 hasA(p;,0,h) > |o(pi)/2] > é(pi)/4; we will take z; to be this
value ofx. We now simply take the target functian to be the classifier that labels positive for
all 7, and labels every other point negative. By construction, we Wavg(p;, 6, h*) > ¢(p;)/4,
and therefore

Veg > 0,3e < €y : Ale, 0, h™) > ¢(e) /4,

so thatA(e, 0, h*) # o(¢(e)). O

Note that this implies that the(1/¢) guarantee of Corollafy 3.6 is in some sense the tightest
guarantee we can make at that level of generality, without using a more detailed description of
the structure of the problem beyond the finite VC dimension assumption.

This type of example can be realized by certain nasty distributions, even for a variety of
simple hypothesis classes: for example, linear separat®$ am axis-aligned rectangles k.

We remark that this example can also be modified to show that we cannot expect intersections

of classifiers to preserve exponential rates. That is, the proof can be extended to show that there
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exist classe€’; and Cs, such that botiC,, D) and(C,, D) are learnable at an exponential rate,

but(C, D) is not, whereC = {h; N hy : hy € Cq, hy € Cy}.

3.6 Discussion and Open Questions

The implication of our analysis is that in many interesting cases where it was previously believed
that active learning could not help, it turns out that active learmiogs help asymptotically

We have formalized this idea and illustrated it with a number of examples and general theorems
throughout the chapter. This realization dramatically shifts our understanding of the usefulness
of active learning: while previously it was thought that active learning caolgrovably help

in any but a few contrived and unrealistic learning problems, in this alternative perspective we
now see that active learning essentialwayshelps, and does so significantly in alit a few
contrived and unrealistic problems.

The use of decompositions @f in our analysis generates another interpretation of these

results. Specifically, Dasgu Ja_[ﬂ)OS] posed the question of whether it would be useful to de-

velop active learning techniques for looking at unlabeled data and “placing bets” on certain
hypotheses. One might interpret this work as an answer to this question; that is, some of the

decompositions used in this chapter can be interpreted as reflecting a preference partial-ordering

of the hypotheses, similar to ideas explored in the passive learning literature [Balcan and Blum,

Shawe-Tavlor et ¢

1908, Vap 1|k_1998]. However, the construction of a good decomposition
in active learning seems more subtle and quite different from previous work in the context of
supervised or semi-supervised learning.

It is interesting to examine the role of target- and distribution-dependent constants in this
analysis. As defined, both the verifiable and true label complexities may depend heavily on the
particular target function and distribution. Thus, in both cases, we have interpreted these quan-
tities as fixed when studying the asymptotic growth of these label complexitiea@soaches

0. It has been known for some time that, with only a few unusual exceptions, any target- and
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distribution-independent bound on the verifiable label clexipy could typically be no better

than the label complexity of passive learning; in particular, this observation lead Dasgupta to for-

mulate his splitting index bounds as both target- and distribution-depe sgupta, 2005].

This fact also applies to bounds on the true label complexity as well. Indeed, the entire distinc-
tion between verifiable and true label complexities collapses if we remove the dependence on

these unobservable quantities.

One might wonder what the practical implications of the true label complexity of active learn-
ing might be since the theoretical improvements we provide are for an unverifiable complexity
measure and therefore they do not actually inform the user (or algorithm) of how many labels
to allow the algorithm to request. However, there might still be implications for the design of
practical algorithms. In some sense, this is the same issue faced in the analysis of universally

consistent learning rules in passive Iearnlng_[.D_aLLQ;Le tal., 1996]. There is typically no way to

verify how close to the Bayes error rate a classifier is (verifiable complexity is infinite), yet we

still want learning rules whose error rates provably converge to the Bayes error in the limit (true
complexity is a finite function of epsilon and the distribution&f, Y)), and we often find such
methods quite effective in practice (e.g-nearest neighbor methods). So this is one instance
where an unverifiable label complexity seems to be a useful guide in algorithm design. In active
learning with finite-complexity hypothesis classes we are more fortunate, since the verifiable
complexity is finite — and we certainly want algorithms with small verifiable label complexity;
however, an analysis of unverifiable complexities still seems relevant, particularly when the veri-
fiable complexity is large. In general, it seems desirable to design algorithms for any given active
learning problem that achieve both a verifiable label complexity that is near optimal and a true

label complexity that is asymptotically better than passive learning.

Open Questions: There are many interesting open problems within this framework. Perhaps
the most interesting of these would be formulating general necessary and sufficient conditions

for learnability at an exponential rate, and determining for what types of algorithms Theatem 3.5
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can be extended to the agnostic case or to infinite capacitgthgpis classes. We will discuss

some progress on this latter problem in the next chapter.

3.7 The Verifiable Label Complexity of the Empty Interval

Let h_ denote the all-negative interval. In this section, we lower bound the verifiable labels
complexities achievable for this classifier, with respect to the hypothesisClassiterval clas-
sifiers under a uniform distribution dn, 1]. Specifically, suppose there exists an algorithm
that achieves a verifiable label complexitye, 6, h) such that for some € (0,1/4) and some
§ € (0,1/4),
Ae,d,h) < LLJ |
24e

We prove that this would imply the existence of some intek&r which the value of\ (e, §, 1)

is not valid under Definitior:32. We proceed by the probabilistic method.

Consider the subset of intervals

o = {[3ie,3(2’+1)e] e {0,1,..., {1;’6”} .

Lets = [A(e,6,h_)]. Foranyf € C, let Ry, h;, andé; denote the random variables repre-

senting, respectively, the set of examplesy) for which A(s, §) requests labels (including their
y = f(x) labels), the classified(s, §) outputs, and the confidence boungs, ¢) outputs, when
f is the target function. Lelf be an indicator function that is 1 if its argument is true and 0

otherwise. Then
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> E ‘;M fem%:pzh I (IP’X (i}f(X) - +1> < e) NGRS g)ﬂ (3.2)
_E _|fi| fEHE%;:Rh i (IP’X (hh (X) # h_(X)) < (—:) A < e)}:l (3.3)
> 2| (B22) 1 (o £000) < <] (3.4)

All expectations are over the draw of the unlabeled examples and any additional random bits
used by the algorithm. LinE-3.2 follows from the fact that all intervals H, are of width

3¢, so if h; labels less than a fractionof the points as positive, it must make an error of at
least2e with respect tof, which is more thard; if €, < e. Note that, for any fixed sequence of
unlabeled examples and additional random bits used by the algorithm, the,setscompletely
determined, and any and f for which R; = Ry must haveh; = hy andé; = ép. In
particular, anyf for which R, = R, will yield identical outputs from the algorithm, which
implies line[33B. Furthermore, the only classifigis= H, for which Ry # R, are those for
which some(z, —1) € R, hasf(z) = +1 (i.e.,z is in the f interval). But since there is zero
probability that any unlabeled example is in more than one of the intervéls with probability

1 there are at mostintervalsf € H. with R; # R, , which explains lin€3]4.

This proves the existence of some target functivre C such thatP(er(hss) > és5) > 0,
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which contradicts the conditions of Definitibn13.2.

3.8 Proof of Theorem[3.Y

First note that the total number of label requests used by the aggregation procedure in Algorithm
4is at most. Initially running the algorithmsl,, ..., A, requiresy."_, |t/(4i%)] < t/2 labels,
and the second phase of the algorithm requiré§2 In(4% /)] labels, which by definition of
is also less thar/2. Thus this procedure is a valid learning algorithm.
Now suppose that the true targetis a member ofC;. We must show that for any input
such that

t > max {4i® [A;(e/2,6/2,h")], 2% [721n(4i/6)]}

the aggregation procedure outputs a hypothiesssich thater(i}t) < e with probability at least
1-06.

First notice that since > 2:* [721n(44/8)], k > i. Furthermore, since/(4:%) >
[A;(e/2,6/2, h*)], with probability at least —4 /2, running.A;(|t/(4i%)], §/2) returns a function
h; with er(h;) < €/2.

Let j* = argmin, er(h;). Sinceer(h;.) < er(h) for any/, we would expect,- to make no
more errors thak, on points where the two functions disagree. It then follows from Hoeffding’s
inequality, with probability at least — 6 /4, for all ¢,

e < 1—72 (721n (4k/5)]

and thus

min max mjp < l [721n(4k/9)] .
i 12

Similarly, by Hoeffding’s inequality and a union bound, with probability at Idast) /4, for any
¢ such that

— % 72 In(4k/5)]
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the probability that,, mislabels a point: given thath,(x) # h;-(z) is less thar/3, and thus
er(hy) < 2er(hj-). By a union bound over these three events, we find that, as desired, with

probability at least — 9,

~

er(hy) < 2er(hj«) < 2er(h;) <e.

3.9 Proof of Theorem3.8

Assume thatC, D) is learnable at an exponential rate. This means that there exists an algorithm
A such that for any targét® in C, there exist constantg,- andk;,- such that for any ando, for
anyt > ;- (log(1/(ed)))*~, with probability at least — §, aftert label requests4(t, §) outputs

ane-good classifier.

For each, let

(CZ:{hECthz,khgz}

Define an algorithmy; that achieves the required polylog verifiable label complexity@©nD)
as follows. First, run the algorithm to obtain a functiom 4. Then, output the classifier 1@;
that isclosest tdh 4, i.e., the classifier that minimizes the probability of disagreement hyjtHf
t >i(log (2/(€d))), then after label requests, with probability at ledst- 4, A(t, §) outputs an
¢/2-good classifier, so by the triangle inequality, with probability at léastd, A;(t, J) outputs

ane-good classifier.

It can be guaranteed that with probability at least o, the function output by; has error
no more tharg, = (2/6) exp {—(t/i)"/*}, which is no more than, implying that the expression

above is averifiablelabel complexity.
Combining this with Theorefi 3.7 yields the desired result.
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3.10 Heuristic Approaches to Decomposition

As mentioned, decomposing purely based on verifiable complexity with respgcttd typ-
ically cannot yield a good decomposition even for very simple problems, such as unions of
intervals. The reason is that the set of classifiers with high verifiable label complexity may itself

have high verifiable complexity.

Although we have not yet found a general method that can provably always find a good
decomposition when one exists (other than the trivial method in the proof of Théarkm 3.8), we
find that a heuristic recursive technique is frequently effective. To begin, défire C. Then
for i > 1, recursively defineC; as the set of alh € C,_; such thatd, = oo with respect to
(C;_1,D). (Hered, is the disagreement coefficient bf) Suppose that for som¥, Cy; = 0.

Then for the decompositia;, C,, . . ., Cy, everyh € C hasf;, < oo with respect to at least one
of the sets in which it is contained, which implies that the verifiable label complexitywath
respect to that set i®(polylog(1/ed)), and the aggregation algorithm can be used to achieve

polylog label complexity.

We could alternatively perform a similar decomposition using a suitable definition of splitting

index |Dasgupté, 2005], or more generally using

. A(Ciﬂ (67 57 h)
lim sup T
0 (log (55))

for some fixed constarit > 0.

This procedure does not always generate a good decomposition. Howevet, o exists,
then it creates a decomposition for which the aggregation algorithm, combined with an appropri-
ate sequence of algorithrgst; }, could achieve exponential rates. In particular, this is the case
for all of the (C, D) described in Sectidn3.5. In fact, even\f = oo, as long as everj € C

does end up isomesetC,; for finite 4, this decomposition would still provide exponential rates.
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3.11 Proof of Theoreni3.b

We now finally prove Theorefni3.5. This section is mostly self-contained, though we do make
use of Theorer 37 from Sectibn1B.4 in the final step of the proof.

The proof proceeds according to the following outline. We begin in Lelamd 3.12 by de-
scribing special conditions under which a CAL-like algorithm has the property that the more
unlabeled examples it considers, the smaller the fraction of them it asks to be labeled. Since
CAL is able to identify the target’s true label on any example it considers (either the label of
the example is requested or the example is not in the region of disagreement and therefore the
label is already known), we end up with a set of labeled examples growing strictly faster than the
number of label requests used to obtain it. This set of labeled examples can be used as a training
set in any passive learning algorithm. However, the special conditions under which this happens
are rather limiting. In LemmB=31L3, we exploit a subtle relation between overlapping boundary
regions and shatterable sets to show that we can decompose any finite VC dimension class into a
countable number of subsets satisfying these special conditions. This, combined with the aggre-
gation algorithm, and a simple procedure that boosts the confidence level, extends[[emma 3.12
to the general conditions of Theoréml3.5.

Before jumping into LemmB=3212, it is useful to define some additional notation. For any

V C C andh € C, define theboundaryof h with respect taD andV', denoted h, as

dyh = lim DIS(By (h,r)).

Lemma 3.12. Suppose(C, D) is such thatC has finite VC dimensiod, and

Vh € C,IP(0zh) = 0. Then for any passive learning label complexitye, ¢, i) for (C, D)
which is nondecreasing as— 0, there exists an active learning algorithm achieving a labe
complexityA, (e, 9, h) such that, for any > 0 and any target function* € C with

Ay(e,0,h*) = w(l) andVe > 0,A, (¢, 0, h*) < oo,

Au(€,20,h™) = o(A,(€,6,h7)) .
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Proof. Recall thatt is the “budget” of the active learning algorithm, and our goal in this proof is
to define an active learning algorithA), and a functiom\, (e, §, h*) such that, ift > A, (¢, 0, h*)
andh* € C is the target function, thed, (¢, d) will, with probability 1 — §, output ane-good
classifier; furthermore, we require thaf(e, 29, h*) = o(A, (¢, 0, h*)) under the conditions oh*

in the lemma statement.

To construct this algorithm, we perform the learning in two phases. The first is a passive
phase, where we focus on reducing a version space, to shrink the region of disagreement; the
second is a phase where we construct a labeled training set, which is much larger than the number
of label requests used to construct it since all classifiers in the version space agree on many of
the examples’ labels.

To begin the first phase, we simply request the labels of,, .. ., z|;2|, and let
V={heC:V¥i<|[t/2],hlz;) = h*(z;)} .

In other words) is the set of all hypotheses it that correctly label the first/2| examples.

By standard consistency resu tlal 89, Devroye et all, 1996, Mapnik, 1982], there

is a universal constamt> 0 such that, with probability at least— ¢ /2,

dInt +1n 3
super(h) <c (niné) :
heV t

dint +1In L
VQB@@*,C(in :né)),

and thusP(DIS(V)) < A, where

e oo (21)

Clearly,A; goes ta0 ast grows, by the assumption d{0dzh*).

This implies that

Next, in the second phase of the algorithm, we will actively construct a set of labeled exam-
ples to use with the passive learning algorithm. If ever we V& S(V')) = 0 for some finite

t, then clearly we can return aye V, so this case is easy.
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Otherwise, letr, = |t/(24P(DIS(V))1n(4/6)) |, and suppose > 2. By a Chernoff bound,
with probability at leasl — §/2, in the sequence of examples o1, ©|/2)+2, - - - » T|¢/2)+n, L
mostt/2 of the examples are iDIS(V'). If this is not the case, we fail and output an arbitrary
otherwise, we request the labels of every one of thesxamples that are iDIS(V).

Now construct a sequenae= {(z}, ), (25, ¥5), - .-, (x),,,y,,)} of labeled examples such
thatz; = x;24:, andy; is either the label agreed upon by all the elements$/pfor it is
the h*(x|,/2)+:) label value we explicitly requested. Note that becaius$g- er(h) = 0 with
probability 1, we also have that with probability everyy, = h*(z}). We may therefore use
thesen, examples as iid training examples for the passive learning algorithm.

Supposel is the passive learning algorithm that guarantegs, ¢, 1) passive label complex-
ities. Then leth, be the classifier returned b¥(L, §). This is the classifier the active learning
algorithm outputs.

Note that ifn, > A, (e, §, h*), then with probability at least— 6 over the draw oL, er(h;) <

e. Define

Au(6,20,h%) =1 +1inf {s: s> 1441n(4/5)A,(e, 0, A" ) A} .

This is well-defined when (¢, §, h*) < oo because\; is nonincreasing iR, so some value of

will satisfy the inequality. Note that if > A, (e, 20, h*), then (with probability at least — §/2)

'
A b h) < — _<p, .
W60 ) < Tna, S

So, by a union bound over the possible failure events listed ab@eddr P(DIS(V')) > A4, 6/2
for more thart /2 examples ofL in DIS(V'), andé for er(h;) > e when the previous failures do
not occur), ift > A, (¢, 24, h*), then with probability at least — 26, er(h;) < e. SOA,(€, 0, h*)

is a valid label complexity function, achieved by the described algorithm. Furthermore,
No(€,26,h) <1+ 1441n(4/0)Ap(e, 0, K" ) A, (e,25,h%)—2-

If Au(e, 26, h*) = O(1), thensince\, (e, d, h*) = w(1), the result is established. Otherwise, since

Aq(€,6,h*) is nondecreasing as— 0, A,(€,26, h*) = w(1), SO we Know that\,, (¢ 25 1+)—2 =
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o(1). Thus,A,(€, 26, h*) = o (A, (€, 6, hY)). O

As an interesting aside, it is also true (by essentially threesargument) that under the
conditions of Lemm&3.12, theerifiablelabel complexity of active learning is strictly smaller
than theverifiablelabel complexity of passive learning in this same sense. In particular, this
implies a verifiable label complexity that is(1/¢) under these conditions. For instance, with
some effort one can show that these conditions are satisfied when the VC dimengias lof
or when the support oD is at most countably infinite. However, for more complex learning
problems, this condition will typically not be satisfied, and as such we require some additional
work in order to use this lemma toward a proof of the general result in Thdarém 3.5. Toward this
end, we again turn to the idea of a decompositiorCothis time decomposing it into subsets

satisfying the condition in Lemnia3112.

Lemma 3.13. For any (C, D) whereC has finite VC dimensiod, there exists a countably

infinite sequenc€,, Cs, . .. such thatC = U2, C; andVi, Vh € C;,P(0,h) = 0.

Proof. The case ofl = 0 is clear, so assumé> 0. A decomposition procedure is given below.
We will show that, if we lef = DecomposgC), then the maximum recursion depth is at most
d (counting the initial call as depth). Note that if this is true, then the lemma is proved, since
it implies thatH can be uniquely indexed by &tuple of integers, of which there are at most

countably many.

Algorithm 2 DecomposgH)
LetH,, = {h € H:P(0zh) =0}

if Ho, = H then
Return{H}
else

Fori € {1,2,...},letH; = {heH : P(dgyh) e ((1 +27@F3)) = (1 4 27 (@H3))1=]}
Return |J Decompos€H;)U {H}

i€{1,2,..}
end if
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For the sake of contradiction, suppose that the maximum seoudepth of Decompo&€)
is more thani (or is infinite). Thus, based on the fikst- 1 recursive calls in one of those deepest

paths in the recursion tree, there is a sequence of sets
C=HO >HD OHD ... KD )

and a corresponding sequence of finite positive integels, . . ., i4.1 such that for each €

{1,2,...,d+ 1}, everyh € HY) has
P(Og-nh) € ((1+279)70, (14 274 1=0]
Take anyhg,, € H@Y. There must exist some> 0 such thatj € {1,2,...,d + 1},
P(DIS(By-n (hae1, 7)) € (1427 @9) 7 (14 272 (1 4 2-@3)=5]. (3.5)
In particular, by[(3b), each € By, (hqg+1,7/2) has
P(0gg-nh) > (14274375 > (14 272N IP(DIS(Byg-1 (hat1, 7)),
though by definition ob,; 1)k and the triangle inequality,
P(03-nh \ DIS(Bj- (hatr,7))) = 0.

Recall that in general, for se@gandR;, Rs, ..., Ry, if P(R;\ Q) = 0 for all i, thenP (", R;) >
P(Q)—F, (P(Q)—P(R;)). Thus, for anyj, any set o< 24+ classifiersl” By (hay1,7/2)

must have
P(Mherdno-vh) > (1 =27 (1 = (14272 " )P(DIS(Byv (ha1,7))) > 0.

That is, any set o' classifiers ir{() within distancer/2 of h,.; will have boundaries with
respect ta~") which have a nonzero probability overlap. The remainder of the proof will
hinge on this fact that these boundaries overlap.

We now construct a shattered set of points of size 1. Consider constructing a binary

tree with2¢*! leaves as follows. The root node contains; (call this leveld + 1). Leth, €
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Byya)(hgs1,7/4) be some classifier witB(hq(X) # hq1(X)) > 0. Let the left child of the root
be hyy1 and the right child bé,; (call this leveld). DefineA; = {z : hy(z) # hqi1(z)}, and
let Ay = 27 @*2P(A,). Now for each? € {d — 1,d — 2,...,0} in decreasing order, we define
the/ level of the tree as follows. Lét,,; denote the nodes at tlier 1 level in the tree, and let
Ay = Nier,,, O h. We iterate over the elementsf, , in left-to-right order, and for each one

h, we findh' € By (h, Agyq) With
Pp(h(z) # W (z) Nz € A) > 0.

We then define the left child df to beh and the right child to bé’, and we update
A, — A,z h(z) # W (x)}.

After iterating through all the elements @f, ; in this manner, definél, to be the final value of
A, andA, = 27@H2P(A,). The key is that, because evéryn the tree is within /2 of 24,1, the
setA) always has nonzero measure, and is containég inh for anyh € 7,4, so there always
exists amy’ arbitrarily close toh with Pp(h(z) # h'(z) Ax € A}) > 0.

Note that for¢ € {0,1,2,...,d}, every node in the left subtree of ahyat level/ + 1 is
strictly within distanceA, of h, and every node in the right subtree of anwt level/ + 1 is
strictly within distanceA, of the right child ofh. Thus,

P(3K € Ty, " € Subtree(h') : W (x) # h'(x)) < 277124,
Since
2d+12Ag = ]P(Ag) = ]P(LL’ c ﬂ 87:[(5) n andV SiblingShl, hy € Ty, hl(l’) 7A hg(l’)),

h/ETg+1

there must be some set
A ={x € () O’ st.Vsiblingshy, hy € Ty, by () # ha(x)
h'€Tyyq

andvh € Ty, h' € Subtree(h), h(x)=h'(z)} C A,
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with P(A;) > 0. That is, for every: at level/ + 1, every node in its left subtree agrees witbn
everyx € Aj and every node in its right subtree disagrees withn everyx € Aj. Therefore,
taking any{xo, x1, s, . .., x4} such that each, € A} creates a shatterable set (shattered by the
set of leaf nodes in the tree). This contradicts VC dimensgioso we must have the desired

claim that the maximum recursion depth is at mast O

Before completing the proof of Theordm 1.5, we have two agldéti minor concerns to
address. The first is that the confidence level in Lerimd 3.12 is slightly smaller than needed for
the theorem. The second is that Lemimal3.12 only applies Wheno, h*) < oo for all € > 0.

We can address both of these concerns with the following lemma.

Lemma 3.14. SupposeC, D) is such thatC has finite VC dimensio, and suppose
Al (e,6,h*) is a label complexity fofC, D). Then there is a label complexity, (¢, J, h*) for
(C,D) s.t. foranys € (0,1/4) ande € (0,1/2),

min {Ag(e/Q, 46, h*), 16d 1og(26/€)+8log(4/5) }

€

Au(e,0,h") < (k+ 2) max :
(k +1)*721log(4(k + 1)2/9)

wherek = [log(6/2)/ log(45)].

Proof. SupposeA’, is the algorithm achieving/, (e, 5, h*). Then we can define a new algorithm

A, as follows. Supposeis the budget of label requests allowedAf andd is its confidence
argument. We partition the indices of the unlabeled sequencé: int@ infinite subsequences.

Fori e {1,2,...,k},leth, = Al(t/(k+2),40), each time running!, on a different one of these
subsequence, rather than on the full sequence. From one of the remaining two subsequences, we
request the labels of the first(k + 2) unlabeled examples and let,; denote any classifier i@
consistent with these labels. From the remaining subsequence, far ¢ach1,2, ..., k+1} s.t.

P(h;(X) # h;j(X)) > 0, we find the first| ¢ /((k + 2)(k + 1)k) | examples: s.t. h;(x) # h;(z),

request their labels and let;; denote the number of mistakes made/yon these labels (if

P(h;(X) # h;(X)) = 0, we letm;; = 0). Now take as the return value df, the classifier:;

91



where; = arg min; max; m;.

Suppose > A,(¢,6,h*). First note that, by a Hoeffding bound argument (similar to the
proof of Theoreni 3]7); is large enough to guarantee with probabilityl — ¢/2 thater(h;) <
2min; er(h;). So all that remains is to show that, with probability1 — §/2, at least one of
theseh; haser(h;) < €/2.

If A’ (/2,48 h*) > 16d10e26/09+810e(4/9) “thap the classic results for consistent classifiers

(e.g., [Blumer et &l., 1989, Devroye el al., 1996, V: LiLL982]) guarantee that, with probability

>1—-10/2, er(hi+1) < €/2. Otherwise, we have> (k + 2)Al(e/2,44, h*). In this case, each
of hy, ..., hy has an independent 1 — 49 probability of havinger(h;) < €/2. The probability

at least one of them achieves this is therefore at least4d)* > 1 — §/2. O
We are now ready to combine these lemmas to prove Thdarém 3.5.

Theoren3b.TheoremZ3b now follows by a simple combination of Lemrhas]3.12[and 3.13,
along with Theorenl 317 and Lemria—3.14. That is, the passive learning algorithm achieving
passive learning label complexity,(e, §, k) on (C, D) also achieves passive label complexity
A, (e,6,h) = ming<.[A,(¢,0,h)] on any(C;, D), whereC,, C,, ... . is the decomposition from
Lemma3IB. So Lemniaz3112 guarantees the existence of active learning algofithiss. . .

such thatd; achieves a label complexity;(e, 26, h) = o(A,(e,d,h)) on (C;, D) forall § > 0
andh € C; s.t. A, (e, 6, h) is finite andw(1). Then Theored 317 tells us that this implies the exis-
tence of an active learning algorithm based on théseombined with Algorithm 4 , achieving
label complexity\/ (e, 49, h) = o(A,(¢/2,6, h)) on (C, D), for anys > 0 andh s.t. A,(e/2, 6, h)

is always finite and isv(1). Lemmal33. ¥ then implies the existence of an algorithm achiev-
ing label complexityA,(e,d,h) € O(min{A,(e/2,46, h),log(1/€)/e}) T o(A,(e/4,8,h)) C
o(A,(e/4,6,h)) forall § € (0,1/4) and allh € C. O

Note there is nothing special abouin Theoreni-315. Using a similar argument, it can be made

arbitrarily close tal.
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Chapter 4

Activized Learning: Transforming Passive

to Active With Improved Label Complexity

In this chapter, we prove that, in the realizable case, virtually any passive learning algorithm can
be transformed into an active learning algorithm with asymptotically strictly superior label com-
plexity, in many cases without significant loss in computational efficiency. We further explore
the problem of learning with label noise, and find that even under arbitrary noise distributions,
we can still guarantee strict improvements over the known results for passive learning. These are
the most general results proven to date regarding the advantages of active learning over passive

learning.

4.1 Definitions and Notation

As in previous chapters, all of our asymptotics notation in this chapter will be interpretted as
e \, 0, when stated for a function ef the desired excess error, orias— oo when stated for

a function ofn, the allowed number of label requests. In particular, recall that for two functions

$1 ande,, we sayg, (¢) = o(¢s(e)) iff hi% 238 = 0. Throughout the chapter, thenotation, as

well as “O,” “ Q) "w,” * «,” and “>,” where used, should be interpreted purely in terms of the
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asymptotic dependence emr n, with all other quantities held constant, includifgy, 6, and

C, where appropriate.

Definition 4.1. Define the set of functions polynomial in the logarithm 6f as follows.

Polylog(1/€) = {¢ : [0,1] — [0,00]|3k € [0, 00) S.t.¢(e) = O(log®(1/€))}.

Definition 4.2. We say an active meta-algorithr, activizesa passive algorithm,, for C
underD if, for any label complexity\, achieved by4,,, A,(A,, -) achieves label complexity,
such that for allD € D,

A, (e + v(C, D), D) € Polylog(1/e) = Au(e + v(C, D), D) € Polylog(1/e), and if

A, (e +v(C,D),D) < oo andA, (e + v(C, D), D) ¢ Polylog(1/e), then there exists a finite

constant: such that

Au(ce +v(C,D), D) = o(A,(e + v(C, D), D)).

Note that, in keeping with the reductions spirit, we only rieguhe meta-algorithm to suc-
cessfully improve over the passive algorithm under conditions for which the passive algorithm
is itself a reasonable learning algorithr,(< o). Given a meta-algorithm satisfying this con-
dition, it is a trivial matter to strengthen it to successfully improve over the passive algorithm
even when the passive algorithm is not itself a reasonable method, simply by replacing the pas-
sive algorithm with an aggregate of the passive algorithm and some reasonable general-purpose
method, such as empiricial error minimization. For simplicity, we do not discuss this matter

further.

We will generally refer to any meta-algorithr, that activizeseverypassive algorithny,,
for C underD as ageneral activizerfor C underD. As we will see, such general activizers do
exist underRealizable(C), under mild conditions of. However, we will also see that this is

typically nottrue for the noisy settings.
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4.2 A Basic Activizer

In the following, we adopt the convention that any set of classifieshatters{ } iff VV # {} (and

otherwise, shattering is defined aslin [Val lllik_].998], as usual). Furthermore, for convenience,

we will definex? = {{}}.

Let us begin by motivating the approach we will take below. Similarly to Ch@pter 3, define the
boundaryasocDxy = 71}{% DIS(C(r)). If P(OcDxy) = 0, then methods based on sampling in
the region of disagreement and inferring the labels of examples not in the region of disagreement
should be effective for activizing (in the realizable case). On the other hali()dD ) > 0,
then such methods will fail to focus the sampling region beyond a constant fractidh &b
alternative methods are needed. To cope with such situations, we might exploit the fact that the
region of disagreement of the set of classifiers with relatively small empirical error rates on a
labeled sample (call this Sél(T)) converges t@cDxy (up to measure-zero differences). So,
for a large enough labeled sample, a random peirt DIS(C(7)) will probably be in the
boundary region. We can exploit this fact by usindgo split C(T) into two subsets:V, =
{h € C(r) : hz) = +1}andV_ = {h € C(r) : h(z) = —1}. Now, if z € dcDxy,
thenhien‘ﬁ+ er(h) = hiené er(h) = v(C,Dxy). So, for almost every point’ € X \ DIS(V,),
we can infer a label for this point, which will agree with some classifier whose error rate is
arbitrarily close tov(C, Dxy), and similarly forV_. In particular, in the realizable case, this
inferred label is the target function’s label, and in the benign noise case, it is the Bayes optimal
classifier’s label (when(z’) # 1/2). We can therefore infer the label of points not in the region
DIS(V,)n DIS(V_), thus effectively reducing the region we must request labels in. Similarly,
this region converges to a regidhy, Dxy N dy_Dxy. If this region has zero probability, then
sampling fromDIS(V,) N DIS(V_) effectively focuses the sampling distribution, as needed.
Otherwise, we can repeat this argument; for large enough sample sizes, a random point from

DIS(Vy) N DIS(V_) will likely be in 0y, Dxy N dy_Dxy, and therefore split€(7) into four

sets withv(C, Dxy) optimal error rates, and we can further focus the sampling region in this
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way. We can repeat this process as needed until we get aqna@iti@(f) with a shrinking
intersection of regions of disagreement. Note that this argument can be written more concisely
in terms of shattering. That is, a point in/S(C(7)) is simply a point that"(7) can shatter.
Similarly, a pointz’ € DIS(V,) N DIS(V_) is simply a point s.tC(7) shatters{x, '}, etc.

The above simple argument leads to a natural algorithm, which effectively improves label
complexity for confidence-bounded error in the realizable case. However, to achieve improve-
ments in the label complexity for expected error, it is not sufficient to merely have the probability
of a random point iD15(C(7)) being in the boundary converging toas this could happen at
a slow rate. To resolve this, we can replace the single samyiéh multiple samples, and then
take a majority vote over whether to infer the label, and which label to infer if we do.

The following meta-algorithm, based on these observations, is central to the results of this
chapter. It depends on several parameters, and two types of estin&fors;-) andl'®)(-, -, -);

one possible definition for these is given immediately after the meta-algorithm, along with a

discussion of the roles of these various parameters and estimators.

Meta-Algorithm 5 : Activizer(A,, n)
Input: passive algorithml,,, label budget:
Output: classifieh

0. Request the firgtn /3| labels and lety denote thesén /3| labeled examples
1. LetV ={h e C:erg(h) — znigcl erg(h') <7}
‘e
2. Lets, be the nexin,, unlabeled examples, adf) the nextm,, examples after that
3.Fork=1,2,...,d+1 R
4. LetL, denote the nextn/(6 - 28A™ (U,,Us)) | unlabeled examples,
5. For gach: € Ly,
6. If A®(z,Uy) > 1 — ~, and we've requested |n/(3 - 2¥)] labels inL; so far,
7 Request the label af and replace it inC, by the labeled one
8
9

Else, label: with argmax I'®)(z,y,U,) and replace it irC,, by the labeled one
ye{—1,+1}

. ReturnActiveSelect({A,(L1), Ay (L2), ..., Ay(Las1)}, [n/3])

Subroutine:ActiveSelect({hy, ha, ..., hx},m)

0. Foreachj, k€ {1,2,...,N}:j <k,

1. Take the nextm/(})] examplese s.t. h;(z) # hi(x) (if such examples exist)

2. Letm;, andm,, respectively denote the number of mistakesindh;,, make on these
3. Returnhy, wherek = arg miny max; 1mg;

96



The meta-algorithm has several parameters to be specified.bel

As with Algorithm O and the agnostic generalizations thereof, thé’sen be represented
implicitly by simply performing each step on the full spacesubject to the constraint given in
the definition ofl/, so that we can more easily adapt algorithms that are designed to manipulate
C. Note that, since this is the realizable case, the choige-6f0 is sufficient, and furthermore
enables the possibility of an efficient reduction to the passive algorithm for many interesting
concept spaces. The choice-ofs fairly arbitrary; generally, the proof requires only that
(0,1).

The design of the estimators™ (14, 1), AW (2,U,), andT'®) (z,y,U,) can be done in
a variety of ways. Generally, the only important feature seems to be that they be converging
estimators of an appropriate limiting values. For our purposes, givemanyN and sequences
U =A{z1,...,2n} € X" andls = {zns1, Zmio, - - -, 2o0m} € X™, the following definitions for

A® Uy, Uy), AP (z,Uy), andD'®) (z, y, Us) will suffice. Generally, we define

" 1 1 A
AUy, U) = —7 + — > 1AW (z,Up) = 1 -] (4.1)

z€Uy

For the others, there are two cases to considér=f1, the definitions are quite simple:
PO(a,y,Us) = 1Vh € V. h(z) = y),

AW (z Uy) = 1]z € DIS(V)].

For the other case, namely > 2, we first partitionl/, into subsets of sizé — 1, and record

how many of those subsets are shattered’byor i € {1,2,..., m/(k — 1)}, defineS" =

[m/(k—=1)]
{emtitG-0k=1) - - - Zmsite—1) }» @nd letM, = maxq1, > 1 [V shattersSi('“)} } Then
=1

defineV(, ,y = {h € V : h(z) = y}, and
) (k1))
0,y th)= > 1 [V shatterss" andV/,. _,, does not shatteﬁfk)} . (4.2)
=1

A®)(z, U,) simply estimates the probability thétU {~} is shatterable by givenS shatterable
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by V, as follows.

Lm/(k—1)]
> 1V shatterss!" U {z}]. (4.3)

i=1

1 1

—_'__
M,i/?’ M,

A(k) (Z, Z/{Q) =

The following theorem is the main result on activized learning in the realizable case for this

chapter.

Theorem 4.3. SupposeC is a VC class) < 7 = o(1), m,, > n, andy € (0, 1) is constant. Let
A® andI'® be defined as i), @3), and @2).

For any passive algorithmi,,, Meta-Algorithm 5 activizes!, for C underRealizable(C).

More concisely, Theorefn4.3 states that Meta-Algorithm 5gereral activizerfor C. We

can also prove the following result on the fixed-confidence version of label compiexity.

Theorem 4.4. Suppose the conditions of Theor&ml4.3 hold, and #aachieves a label

complexityA,. ThenActivizer(A,, -) achieves a label complexity, such that, for any
d € (0,1) andD € Realizable(C), there is a finite constantsuch that
Ay(e,¢6,D) = O(1) = Ay(ce,¢6,D) = O(1) and

Ay(€,0,D) = w(l) = Ay(ce, cd, D) = o(Ay(€,9,D)).
The proof of Theorens 4.3 aid¥.4 are deferred to Setfidn 4.4.

For a more concrete implication, we immediately get the following simple corollary.

Corollary 4.5. For any VC clas<, there exist active learning algorithms that achieve label

complexities\, and A,, respectively, such that for @b yy € Realizable(C),

Au(6, Dxy) =0(1/e), and Yo € (0,1),Ay(€,0,Dxy) = o(1/e). .
Proof. For d = 0, the result is trivial. Fow > 1, tLaus&IﬂL_Lml.ﬁlanﬂ_a.muNamJL h [1D94]

propose passive learning algorithms achieving respective label complekitieDxy) = C;l

and A,(e,6,Dxy) < ™ 1In¥. Plugging this into Theorenis3.3 ahdl4.4 implies that applying
Meta-Algorithm 5 to these passive algorithms yield combined active learning algorithms with

the stated behaviors far, andA,. O

1In fact, this result even holds for a much simpler variant of the algorithm, wiétendA(*) can be replaced

by an estimator that uses a single rand$m X*~! shattered by, rather than repeated samples.
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For practical reasons, it is interesting to note that all efldbel requests in Meta-Algorithm
5 can be performed in three batches: the initid, the requests during thét-1 iterations (which
can all be requested in a single batch), and the requests fdrthwe Select procedure. However,
because of this, we should not expect Meta-Algorithm 5 to have optimal label complexities. In
particular, to get exponential rates, we should expect to @ded batches. That said, it should
be possible to construct the sétssequentially, updatinyy” after each example added4g, and
requesting labels as needed while constructing the set, analogous to Algorithm 0. Some care in
the choice of stopping criterion on each round is needed to make sure fhess#itrepresents an
i.i.d. sample. Such a modification should significantly improve the label complexities compared
to Meta-Algorithm 5, while still maintaining the validity of the results proven here.

Note: The restriction to VC classes is not necessary for positive results in activized learning.
For instance, even if the concept spdcédas infinite VC dimension, but can be decomposed
into a countable sequence of VC class subsets, we can still construct an activiZardioig an

aggregation technique similar to that introduced in Chdpter 3.

4.3 Toward Agnostic Activized Learning

We might wonder whether it is possible to state a result as general as THearem 4.3, even for the
most general settind gnostic. However, one can construct VC clas§gsnd passive algorithms

A, that cannot be activized fdt, even under bounded noise distributiofisgbakov(C, 1, 1)),

let aloneAgnostic. These algorithms tend to have a peculiar dependence on the noise distribu-
tion, so that if the noise distribution arid align in just the right way, the algorithm becomes
very good, and is otherwise not very good; the effect is that we cannot lose much information
about the noise distribution if we hope to get these extremely fast rates for these particular dis-
tributions, so that the problem becomes more like regression than classification. However, as
mentioned, these passive algorithms are not very interesting for most distributions, which leads

to an informal conjecture that amgasonablepassive algorithm can be activized fGrunder
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Agnostic. More formally, | have the following specific conjecture.
Recall that we say. is a minimizer of the empirical error rate for a labeled sampl#f

h i h').
€ argglelgerﬁ( )

Conjecture 4.6. For any VC clas<C, there exists a passive algorith#), that outputs a

minimizer of the empirical error rate on its training sample such that some active

meta-algorithmA, activizesA, for C underAgnostic.

Although, at this writing, this conjecture remains open, riét of this section may serve as

evidence in its favor.

4.3.1 Positive Results

First, we have the following simple lemma, which allows us to restrict the discussion to the

BenignNoise(C) case.

Lemma 4.7. For anyC, if there exists an active algorithtd, achieving label complexities,
andA,, then there exists an active algorithdi achieving label complexities, and A/, such
that, VD € Agnostic andd € (0, 1), for some functiong (e, D), (e, d, D) € Polylog(1/e),

If D € BenignNoise(C), then

N (e +v(C,D),D) < max{2[A,(e/2 + v(C,D),D)], Me, D)},

A (e+v(C,D),6,D) < max{2[A.(e + v(C,D),§/2,D)], \e, 6, D)},
and if D ¢ BenignNoise(C), then

N (e +v(C,D),D) < Me, D),

A,(e +1(C, D), 5,D) < A(&,5,D).

Proof. Consider a universally consistent passive learning algorithmThen. A, achieves label
complexitiesA, and A, such that for any distributio® on X x {—1,+1}, ¥e,d € (0,1),
A (/24 3(D), D) andA,(¢/2+3(D), §/2, D) are both finite. In particular, i#(D) < v(C, D),
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thenA,(¢/2 +v(C,D), D) = O(1) andA,(e/2 + v(C, D), §/2,D) = O(1).

Now we simply runA,(|[n/2]), to get a classifieh,, and runA, (2,3 ) (after requesting
those first|n/3]| labels), to get a classifiér,. Take the next: — |n/2] — [n/3] unlabeled
examples and request their labels; call this&elf er.(h,) — ers(hy,) > n~'/3, returnh = hy;
otherwise, returh = h,. | claim that this method achieves the stated result, for the following
reasons.

First, let us examine the final step of this algorithm. By Hoeffding’s inequality, the probability
thater(h) # min{er(h,), er(h,)} is at mosexp{—n'/3 /24}.

Consider the case whef@ € BenignNoise(C). For anyn > 2[A,(¢/2 + v(C, D), D)],
Eler(hq)] < v(C, D) + €/2, soE[er(h)] < v(C, D) + ¢/2 + 2exp{—n'/3/24}, which is at most
v(C, D) +eif n > 24%In* 2. Also, for anyn > 2[A,(e + v(C, D), §/2,D)], with probability at
leastl — 6/2, er(h,) < v(C,D) + e. If additionally,n > 24°In® 2, then a union bound implies
that with probability> 1 — 8, er(h) < er(h,) < v(C,D) + e.

On the other hand, iD ¢ BenignNoise(C), then for anyn > 3[A,(v(C, D) + ¢/2,D)],
Eler(h)] < Efmin{er(h,), er(h,)}] + 2eap{—n"/3/24} < Eler(h,)] + 2eap{-n'/*/24} <
v(C, D) +¢/2+4 2exp{—n'/?/24}. Again, this is at most(C, D) +¢ if n > 24°In® 2. Similarly,
foranyn > 3[A,(v(C,D)+e¢,6/2,D)] = O(1), with probability> 1—6/2, er(h,) < v(C,D)+
e. If additionally, n > 2431n® % then a union bound implies that with probability 1 — 4,
er(h) < er(hy) < v(C,D) +e.

Thus, we can také(e, D) = max{24%In* 2, 3[A,(v(C, D) + ¢/2,D)]} € Polylog(1/e).
andA(e, 6, D) = max{24°In* 4, 3[A,(v(C, D) +¢€,§/2,D)]} € Polylog(1/e). O

Because of Lemm@a4.7, it suffices to focus our discussion ypurelthe BenignNoise(C)
case, since any label complexity resultsBamign N oise(C) immediately imply almost equally
strong label complexity results fatgnostic, losing only an additive polylogarithmic term. With
this in mind, we state the following active learning algorithm, designed foBih&gn N oise(C)

setting.
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Meta-Algorithm 6:BenignActivizefA,, n)
Input: passive algorithmd,,, label budget.
Output: classifief,

0. Request the firgtn /3| labels and let) denote thesén /3| labeled examples
1. LetV ={h e C:erg(h) — 2{161% erg(h') <t}

2. LetlU, be the nexin,, unlabeled examples

3.Fork=1,2,....d

4. Qr—1{}

5. Fort=1,2,...,[2n/(3-2%)]

6 Leta’ be the next unlabeled example for whietn; <, A9 (z,1) > 1 — v
7 Request the label of 2/ and letQ,, — Q, U {(«',y')}

8. Construct the classifién,, for k € {1,2,...,d + 1} (see description below)
9

. Returnﬁ,%, for k = max {k : maX;cg eer(ka) — eer(ij) < Tk]—}.

The definition off,, in Step 8 of Meta-Algorithm 6 is as follows.
Let iy, = A,(Qy), k'(z) = min{k" : A®)(z,1) < 1 —~}, and
arg max DE@O) (¢ y ), if K (x) <k

hk(x) — ye{—1,+1}

hi(z), otherwise

For the threshold},; in Step 9 of Meta-Algorithm 6, for our purposes, we can take the

following definition.

2048d In(1024d) + In(32(d + 1)/9)
f =2 Qi

It is interesting to note that this algorithm requires only two batches of label requests, which
is clearly the minimum number for any algorithm that takes advantage of the sequential aspects

of active learning. However, even with this, we have the following general results.

Theorem 4.8.LetT = 15 + ﬂ/% 5 € (0,1), and letA® andT'™ be defined as
in @), @3), and@3). For any VC clas<, by applying Meta-Algorithm 6 withl,, being any
algorithm outputting a minimizer of the empirical error rate frdinthe combined active

algorithm achieves a label complexity, such thatvD € BenignNoise(C),

Au(e +v(C,D),5,D) = o(1/?).
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The proof of Theorefi 418 is included in Section4.4.1. Theddincombined with Lemnia34.7,

immediately implies the following quite general corollary.

Corollary 4.9. For any VC clas¥’, andé € (0, 1), there exists an active learning algorithm

achieving a label complexity, such thatVD € Agnostic,

Ao(e +v(C,D),8,D) = o(1/€%).
Note that this result shows strict improvements over the knawrst-case (minimax) label

complexities for passive learning.

4.4 Proofs

4.4.1 Proof of Theorem$4ld 414, and 4.8

Throughout this subsection, we will assufiés a VC class) < 7 = o(1), m,, > n,v € (0, 1),
and A® andI'™ are defined as iM{d.1)[C3.3) arld{4.2), as stated in the conditions of the
theorems. Furthermore, we will definé = {h € C : er|,/3(h) — glei% erin/3(h) < 7}, and
unless otherwise specifie®xy € Agnostic and we will simply discuss the behavior for this
fixed, but arbitrary, distribution.

Also, recall that we are using the convention th&t= {{}} and we say a set of classifiers

V shatterd } iff V' £ {}.

Lemma 4.10.Forany N € N, andN classifiers{hy, ha, ..., hn},
ActiveSelect({h1, ho, ..., hy}, m) makes at mostk: label requests, and ff;, is the classifier

output byActiveSelect({hy, hs, ..., hy}, m), then with probability

>1—-2(N — 1)eatp{—(m/(];))/72}, er(h;) < 2ming er(hy).

Proof. This proof is essentially identical to the proof of Theolem 3.7 from Chapter 3.
First note that the total number of label requests useddyveSelect is at mostm, since

each pair of classifiers uses at mos/t(];’ ) requests.
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Let £ = argmin, er(hy). Now for anyj € {1,2,..., N} with P(h;(X) # hg(X)) > 0,
the law of large numbers implies that with probabilitywe will find at Ieastm/({j) exam-
ples remaining in the sequence for whicf{z) # hy--(z), and furthermore sincer(hj-|{x :
hij(z) # hi(2)}) < 1/2, Hoeffding's inequality implies thalP(my.--; > (7/12)m/ (%)) <
exp{—(m/(%))/72}. A union bound implies

e (s> 1 (3)) < 09— e { - (wi(3)) ).

Now supposé € {1,2,..., N} haser(hy) > 2er(hg). In particular, this implie®(h(X) #
hp (X)) > 0 ander(hgl{z : hp-(x) # hi(z)}) > 2/3. By Hoeffding’s inequality, we
have thatP(my- < (7/12)m/ (%)) < exp{—(m/(%))/72}. By a union bound, we have that
P(3k : er(he) > 2er(hye-) andmax; my, < (7/12)m/(¥)) < (N = Dexp{—(m/(}))/72}.

So, by a union bound, with probability 1 —2(N — 1)exp{—(m/(}))/72}, for thek chosen

by ActiveSelect,
N .
mJaX ml;j = m]aX Mg = (7/12)m/ ( 2) = k:er(hkgggelr(hk**) mjax Mg
and thuser(h;) < 2er(hg-) as claimed. O

Lemma 4.11. There is an eventl,,, holding with probability> 1 — exp{—+/n}, such that for

someC-dependent function(n) = o(1), V C C(¢(n); Dxy ).

Proof. By the uniform convergence bounds proven_b;ulJpLLk_LLQBZ], f@-dependent finite
constantc, with probability> 1 — exzp{—n'/?}, V C C (cn "+ 7;Dxy). Thus, the result
holds forg(n) = cn=Y4 + 7 = o(1). O

Lemma4.12.1f 7 > L5+ 7\/% then there is a strictly positive functian(n) = o(1)

such that, with probability> 1 — 1/n, C(¢'(n); Dxy) C V.

Proof. By the uniform convergence bounds prover_b;u[Jpljjk_[_L982], with probabilityl /n,
everyh € C hasler(h) —er|,3(h)| < 7/3. Therefore, on this event, O C(7/3; Dxy). Thus,

we can lety’(n) = 7/3, which satisfies the desired conditions. ]
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Lemma 4.13. For anyn € N, there is an eventl,, for the data sequencg, /5 with

1, if Dxy € Realizable(C)

1 —1/n, if Dyy ¢ Realizable(C) butr > 13 4 7/ m0n*dln

st.onH/, foranyk € {1,2,...,d+ 1} withP(S € X1 . li{% 1[C(r) shattersS] = 1) > 0,

P(H,) =

P(S € x%! . V shattersS)| h{% 1[C(r) shattersS] = 1)

= P(S € X* ' : lim 1[V (r) shattersS] = 1] li{% 1[C(r) shattersS] = 1) = 1.

™\,0

In(4n)+d1n 22 .
@) +dn 7 the result imme-

Proof. For the case oDy ¢ Realizable(C) andr > 15 47
diately follows from Lemm&Z.12, which implies that on an event of probab#ity — 1/n, for
any setS, 1|V shattersS] > ll\r% 1[V(r) shattersS| = 11\r% 1[C(r) shattersS].

Next we examine the case whePgy € Realizable(C). We will show this is true for any
fixed &k, and the existence dfi’ then holds by the union bound. Fix any sete X*! s.t.
11{% 1[C(r) shattersS] = 1. Supposé/(r) does not shatte$ for somer > 0. Then there is an
infinite sequence of sefgAy”, Ay, ... h{) 1}, with Vj < 251, P(x = b\ (2) # b7 (2)) \, 0,
such that eacl{hgi), . .,hgg,l} C C(r) and shatterss. SinceV(r) does not shattef, 1 =

inf 137 : 1) ¢ V(r)] = inf L3 : 1 (Zjnss)) # h*(Z1gs))]- But

Elinf 13 : b} (Zin/)) # 1" (Ziasa)]] < WEE[LE) : AP (Znys)) # B (Zinga))]

<lim Y [n/3]P(x:h{(x) # h*(x)) =0,

1—00
js2kt

where the second inequality follows from the union bound. Therefore; 0,
P(Z,/3 € X3 . V(r) does not shattef) = 0 by Markov’s inequality. Furthermore, since

1[V(r) does not shatte¥] is monotonic in-, Markov's inequality and the monotone convergence
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theorem give us that

P(Z,3 € X3 li\r% 1[V (r) does not shattef] = 1)

< E[li{% 1[V(r) does not shattes$]] = li{‘I(l]P(ZLn/gJ e X3 . v (r) does not shatte$) = 0.

This implies that

P(Z,/3 € X3 P(Se X 1 lim 1[V (r) shattersS] = 0 lim 1[C(r) shattersS] = 1) > 0)

\,0
= ?{% P(Z/3 € X3 P(Se X+ ! :li{% 1[V (r) shattersS] =0| h\r% 1[C(r) shattersS]=1)>¢)
< ?\n% P(Z|,/3 € X3 P(S e x*! :li\n% 1[C(r) shattersS]=1# li\n% 1[V (r) shattersS]) > ¢)
< %1{% %E[P(S cxk! 11{1(1) 1[C(r) shattersS]=1 ;éll{% 1[V (r) shattersS])] (by Markov's ineq)

= %1\10% %E[ﬂ[}i\r% 1[C(r) shattersS| =1]P(Z|,,/3) : 11\% 1[V (r) shattersS]=0)] (by Fubini's thm)

=lim0 = 0.
EN0

O

Lemma 4.14. Supposek € N satisfiedP(S € X+ 1. li\n% 1[C(r) shattersS] = 1) > 0. There is

a functiong(n) = o(1) such that, for any: € N, on eventt,, N H! (defined above),

P(S € X*!: lim 1[C(r) shattersS] = 0|V shattersS) < ¢(n).

\0

Proof. By Lemmad4.711 and 413, we know that on evEptN H),,

P(S € xF 1. li\r% 1[C(r) shattersS] = 0|V shattersS)

~ P(S € X* : lim,n o 1[C(r) shattersS] = 0 andV shattersS)

B P(S € Xk-1:V shattersS)

- P(S € X*1: lim,\ o 1[/C(r) shattersS] = 0 andV shattersS)

- P(S € X*=1: lim,~ o 1[C(r) shattersS] = 1)

P(S € X% : lim,~ o 1[C(r) shattersS] = 0 andC(¢(n)) shattersS)
P(S € Xk~ : lim, o 1[C(r) shattersS] = 1) '

<
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Defineq(n) as this latter quantity. Since

P(S € xk-1: li{% 1[C(r) shattersS] = 0 andC(r’) shattersS) is monotonic in-’,

, . P(S € X* ! lim,~ o 1[C(r) shattersS] = 0 andC(r’) shattersS)
lim ¢(n) = lim .
n—oco N0 P(S € X*=1: lim,\ o 1[C(r) shattersS] = 1)
_ E[1[lim,~p 1[C(r) shattersS] = 0] lim,\ o 1[C(r") shattersS]]
B P(S € X*1:lim, o 1[C(r) shattersS] = 1)

Y

where the second equality holds by the monotone convergence theorem. This proves

q(n) = o(1), as claimed.

Lemma 4.15. Letk* € N be the smallest indexfor which

P(S € xk-1: li{% 1[C(r) shattersS] = 1) > 0 and

P(S € X* ! P(x : lim 1[C(r) shattersS U {z}] = 1) = 0| li{r(l] 1[C(r) shattersS] = 1) > 7.

\,0

Such ak* < d + 1 exists, and/¢ € (0, 1), In; S.t.Vn > n¢, if Dxy € Realizable(C) or

2n .
T> % +7 % andDxy € BenignNoise(C), on eventd,, N H/, (defined above),

Vk < k¥,

P(z : n(z)#1/2 andP(S € X : V[, +(»)) does not shattes|V shattersS) > () =
P(z : n(z) #1/2 andP(S € X' : V[, 1+ (»)) does not shattes]| ll{l’(l] 1[V (r) shattersS]|=1) > ()

= 0.

Proof. First we prove that such A* is guaranteed to exist. As mentioned, by convention any

set of classifiers shattefg, and{} € X°, so there exist values @f for whichP(S € x* -1 :
11@) 1[C(r) shattersS] = 1) > 0. Furthermore, we will see that for atye {1,...,d + 1}, if

this condition is satisfied far, but

P(S € X1 P li\r% 1[C(r) shattersS U {z}] = 1) = 0| l% 1[C(r) shattersS] = 1) <,

thenP(S € X* : lim 1[C(r) shattersS] = 1) > 0. We prove this by contradiction. Suppose the

T

implication is not true for somg. Then
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0<

IN

IN

1—v

P(S € X1 P(x: li{% 1[C(r) shattersS U {z}] = 1) > 0| li{% 1[C(r) shattersS] = 1)
P(S € Xk P(x: li\n% 1[C(r) shattersS U {z}] = 1) > &)
?\r% P(S € X*=1: lim,~ o 1[C(r) shattersS] = 1)
E[P(x : li{% 1[C(r) shattersS U {z}] = 1)]
1. T
90 €P(S € A1 : lim,~ 1[C(r) shattersS] = 1)
P(S € X% : lim 1[C(r) shattersS] = 1)
0 — lim 0 = 0.

.
0 EP(S € XF=1: lim,n o 1[C(r) shattersS] = 1)  &\o

(by Markov’s inequality)

This is a contradiction, so it must be true that the implication holds fdr.allhis establishes the

existence of*, since we definitely have

P(S € x?: I%P(x : C(r) shattersS U {z}) = 0 li\r% 1[C(r) shattersS] = 1) =1 > 7,

so thatsomek satisfies both conditions.

Next we prove the second claim. Take< k. Letn¢ be s.tsup,.,, g(n) < (; it must exist

sinceq(n) = o(1). By LemmdZIK, fon. > n., on H, N H},

IN

IN

<

<

P(z : n(z)#1/2 andP(S € X*~': V|, 4()) does not shatte$|V shattersS) > ()
P(x : n(x)#1/2 and

P(S € X" Vine(x) does not shattes| l% 1[C(r) shattersS] = 1) + g(n) > ()

e ElLn(2) #1/2]P(S € X1 Vix i (x)) does not shattef| 71}{‘1(1) 1[C(r) shattersS]=1)]

(by Markov’s inequality)

]E[]l[li{% 1[C(r) shattersS]=1]P(z:n(z)#1 /2 andV(, ,* () does not shattes)]

(C=q()P(Sex T Tim 1[C(r) shatterss]=1) (by Fubini's theorem)

]E[]l[li{% 1[V (r) shattersS]=1]P(z:n(z)}#1 /2 andV(, () does not shattes)]
(C=a(m) P(SEX™T: Tim T[C(r) shatterss|=1) (by Lemme4.1B) (4.4)

For any setS € X*~! for which li\r% 1[V (r) shattersS| = 1, there is an infinite sequence of sets

(A0, RS 3 with Vi < 281 P(a < n(2) #1/2 andh!? (2) # h*(2)) \, 0, such that
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each{h{, ..., hé?,l} C V and shatters. If V, »-(,)) does not shattes, then
1= inf1[3j: ) & Vi) = inf 1(3; : W (x) # h*(2)).

In particular, by Markov’s inequality,

P(z : n(x)#1/2 andV(, j+(»)) does not shattey)

< P(x : n(x)#1/2 and inf 1[3; : W (x) # 1 (2)] = 1)
< E[1[n(X)#1/2]inf 1[F; : b} (X) # h*(X)]
< inf P(x : (z) #1/2 and3j s.t. W (x) # h*(x))
< > lim P : () #1/2 andh'” (x) # h*(x)) = 0.
This means{Z14) equals - m

Lemma 4.16. Supposek € {1,2,...,d + 1} satisfies
P(S € Xk li\n% 1[C(r) shattersS] = 1) > 0 and
ap=P(S e x+1: li\r% P(xz : C(r) shattersS U {z}) = 0| l% 1[C(r) shattersS] = 1) > .

Then there is a function!”) = o(1) such that, on evertt,, N H’, (defined above),

P(z : P(S € X*¥~1: V shattersS U {z}|V shattersS) > 1 — (y + ax)/2) < AP,

Proof. Let

A={Secxkt, }1{1(1) 1[C(r) shattersS] = 1 and li{%IP(:c : C(r) shattersS U {x}) = 0}.
Then, lettingp(n) be as in LemmBA4.11, on eveht, N H/,

P(x: P(S € X*1. V shattersS U {z}|V shattersS) > 1 — (v + az)/2)

<P(x:P(S € X1 C(¢(n)) shattersS U {z}| 11{1(1) 1[C(r) shattersS] = 1)
+P(Sextt: ll\r% 1[C(r) shattersS] = 0|V shattersS) > 1 — (y 4+ ax)/2) (4.5)
By Lemmd4.1B, we know there is some finites.t. anyn > n; has (on event/,, N H))
P(S € xF 1. 1{?) 1[C(r) shattersS] = 0|V shattersS) < (a; — v)/3.
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We therefore have that, for > 7,, on eventd,, N H!, (£3) is at most
P(z:P(S€Xx*1:C(4(n)) shattersS{x}| 11{13] 1[C(r) shattersS] =1 ay—~y)/3 > 1—(+ou) /2)
< P(z:P(SeX*1:C(¢(n)) shattersSu{x}|S € A)ay+(1—ay)+(ar—7)/3>1—(v+ai)/2)
=P(z: P(S € X*1: C(¢(n)) shattersS U {z}|S € A) > (ar —7)/(6a,))

%E[F(S € X%1: C(¢(n)) shattersS U { X }|S € A)] (by Markov’s inequality)

IN

< %E[P(x : C(¢(n)) shatterss U {x})|S € A] (by Fubini’s theorem).

We will define A equal to this last quantity for any > n; (we can takeA™ = 1 for
n < n4). It remains only to show this quantity ig1). Since%E[P(x : C(r) shattersS U

{z})|S € A] is monotonic inr,

6ak

lim A® = lim

e A — 7IE[IP’(:): : C(r) shattersS U {z})|S € AJ.

Since for anyS € X%, P(z : C(r) shattersS U {x}) is monotonic inr, the monotone conver-

gence theorem implies

liy QSCE“WE[IP’(x . C(r) shattersS U {z})|S € A]
_ o E[lim P(x : C(r) shattersS U {z})|S € A] = 0.
Q=7 ™0
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Lemma 4.17.Vn € N, there is an eventl,, C H, N H' on Z that, if
Dxy € BenignNoise(C), has
P(H,) > 1 — en*? . exp{—c'n'/*} — 1[Dxy ¢ Realizable(C)]n!, for Dxy- and

C-dependent constantsc’ € (0, o), such that
VneN, onH,, |{z € L : A¥) (2, U) > 1 -~} < [n/(3-25)], (4.6)
FAY) = (1) and A = o(1) s.t.¥n € N, on H,,
AF) (1) < AR and AF) (U, Uy) < AP, (4.7)

whereVk, A®) (Uy) = P(z : A®) (z,Uy) > 1 —v); alsoIn* € Ns.t.¥n > n*, if
Dxy € Realizable(C), onH,,Vr € Ly,

AWV (@,th) < 1=y = T (@, =h*(2), Uy) < T (2, h*(2), Ua), (4.8)

whereL,- is as in Meta-Algorithm 5; alsoin > n*, if Dxy € BenignNoise(C) and

In(4n)+dIn 22
n

T>B 47 i then onH,,,

Pz : n(z)#1/2and3k < k* s.t. A®(2,14) < 1 — ~v and

1",1/3

D" (2, h(x),Us) < TW (2, —h*(x),Us)) < (d+1)e™¢™"", (4.9)

for a C- andDxy-dependent finite constadt > 0.

Proof. Since most of this lemma discusses okly= £*, in the proof | will simplify the notation
by dropping(k*) superscripts, so thak (i, 4,) abbreviates\*") (14, , 1), T'(x, y, Us) abbrevi-
atesI'*")(x, y,U), and so on. | do this only fok*, and will include the superscripts for any
other value of: so that there is no ambiguity.

We begin with [4B). Recall thaf,- is initially an independent sample of size/(6 -
2K A(Uy, U,)) | sampled fromD .y [X] (i.e., before we add labels to the examples). A&H,) =
P(z: Al Uy) > 1—7).
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By Hoeffding’s inequality, on an everft\” (14,) ont4, with P(Ly + HV 1)) > 1 —2-

exp{—Qmi/g} >1—2-exp{—2n'3},

_ 1 « 1
AEh) - = S A U) 21— < —
" ey M,

and therefore

AUy) < AUy, Us).

By a Chernoff bound, there is an evdiit” (Us) on Ly« andis; with
P(Lye, Un: HP (Un)) 2 1—eap{—|n/(6-2" Alh)) | AUa) /3} > 1—exp{—(n—62"")/(18:2")}
such that, on an eveit” (1) N H? (Uy),
{z € L : Az, U) > 1=~} < 2[n/(6- 25 Alh))|AU) < n/(3-2%).

Since the left side of{416) is an integér, {4.6) is established.

Next we provel[&l7). If* = 1, the result clearly holds. In particular, we haté€") (14,) =
P(DI1S(V)), and Hoeffding’s inequality implies that on an event with probability
1 — exp{—2my*}, AD Uy, Uy) < P(DIS(V)) + 2my ">, Combined with Lemm&Z16, we
have bounds oA + 2m, '/* = o(1).

Otherwise, we havé* > 2. In this case, by Hoeffding’s inequality and a union bound (over
k values), for an eventi” overid,, with P(H") > 1 — (d + 1)exp{—2|m,,/(k* — 1)]'/3}, on
H'NH!, forallk € {2,...,k*} (by LemmdZIR)

M, >P(S € x* 1. li\n% 1[C(r) shattersS] = 1)|m,,/(k — 1)] — |my/(k —1)]*3.
Let us name the right side of this inequalityn). Recall that fort < £,

P(S € X% : lim 1[C(r) shattersS] = 1) > 0

\,0
by definition ofk*, som(n) diverges. On everty\") (),

. _ 2
AUy, Us) < A(Us) + < A(Usy) + YL (4.10)

1/3
mn/
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Thus, it suffices to bound(i4,) by ao(1) function. In fact, since we hav&/,- lower bounded

by a diverging function ot N H,, so for sufficiently large:, on H N H/,
AU) <P(x: Al Up) — M? > 1= (2y+a)/3).

Thus, it suffices to bounB(z : A(z, 1) — M.""* > 1 — (2v + a)/3) by ao(1) function. On
eventH, N H) N H', we have that

Pz : Alz,Us) — ML > 1= (29 + ) /3)

<P(z:P(S € X1V shattersS U {z}|V shattersS) > 1 — (v + «)/2)+

[m/(k*—1)]
P(x:|P(S€ X" ~":VshatterSU{z}|V shatters)—— >~ 1[Vshatters,u{z}]| > (a—)/6)
=1

By Lemma4.1b, on event,, N H,,
P(z : P(S € X¥ =1 . V shattersS U {z}|V shattersS) > 1 — (v 4 a)/2) < A®) = o(1).

Thus, it suffices to prove the existence af(a) bound on
Lm/(k*—1)]
P(x:|P(S€ X"~V shatter§U{z}|V shatters) — ;- Z 1[V shatters;U{x}]| > (a—y)/6)
For this, we proceed as follows. Defipg = M Ztm/(k ‘lJ 1[V shattersS; U {z}], a random

variable depending oi,, andp, = P(S € X* ~1 : V shattersS U {z}|V shattersS).

P(Uy : My > m(n) andP(z : |p, — po| > (o —7)/6) > M.'*)

<P <u2 . My > m(n) andaé Ellpx — px|] > M,;l/g) (by Markov's inequality)

Lmn /(K" —1)]
= Y Pl My =m)P (Us : Ellpx — px|] > m™ 3 (a — ) /6| My = m)

m=m(n)

< sup P (Us:exp{t,mE[px — px|]} > exp{t,m®?(a —7)/6}| My = m),

m>m(n)

for any values,, > 0. We now proceed as in Chernoff’'s bounding technique. By Markov’'s
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inequality, this last quantity is at most

sup E[etmmEHpX_ﬁXMMk* = m]exp{—tmmz/s(a —)/6}

m>m(n)

< sup E[E[e!™Px=PxI]| M. = m]exp{—t,,m*?(a —~)/6} (by Jensen and Fubini)

m>m(n)

< sup ( sup E[et”‘B"”’_tmm”] + sup E[etmmp_th"”’])ezp{—tmmz/g(a —7)/6}
m>m(n) pel0,1] p€e(0,1]

whereB,,,, ~ Binomial(m, p), and the expectation is now ov&;, ,. By symmetry, ifp is
the maximizer of the first expectation, thén- p maximizes the second expectation, and the

maximizing values are identical, so this is at most

2 sup sup Eleap{t B, — twmp}exp{—tnm**(a —7)/6)}.
m>m(n) pel0,1]

Following the usual proof for Hoeffding’s inequality [see elg., Devroye el al.,11996], this is at

most

2 sup exp{t?,m/8}exp{—t,m*3(a —~)/6)}.

m>m(n)

Takingt,, = m~/32(a — v)/3, this is
2 sup exp{ml/g(a — 7)2/18 — m1/32(a — 7)2/18}
m>m(n)

=2 sup exp{—m3(a—7)?/18} = 2eap{—m(n)*3(a — v)?/18}.

m>m(n)

Therefore, there is an evehAt” onif, with

P(H") > 1 — 2eaxp{—m(n)"3(a — 7)?/18} > 1—

2exp{—(P(S€X* 1 :1im 1[C(r)shatters] =1)|n/(k*—1) | —|n/(k*—1)]**)3(a—~)?/18},

™0
such thatord]' N H) N H),,
P(z:|P(Sext 1 :VshattersSU{:c}|Vshatter§)—%m/%_lﬁwshatter@u{x}]\ > (a—y)/6)
< M%< m(n)=13 = o(1). -
Finally, we turn tol[4B) and{4.9). i = 1, then forDyy € Realizable(C), we clearly have

2n
h* € V; otherwise, ifDxy € BenignNoise(C) andr > 2474/ %, then Lemm&Z.12
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implies that, on an event ovéd),, /3 of probabilityl — 1/n, with probability1 overx such that
n(z) # 1/2,if T (z,y,Uy) > T (z, —y,Uy), theny = h*(z). This implies [ZB) fork* = 1
and it covers thé = 1 case for[[4P).

Let us now focus ot > 2 for (A3), and in particulak* > 2 for both [4.9) and[{Z]18). By
Lemmda41b, for any: in a set of probabilityl, Hoeffding’s inequality and a union bound (over
k values) implies there is an eveH{*(z) with P(Uy : H(z)) > 1 — (d + 1)exp{—2m(n)*/?}
such that, forn > n,,,, on the additional event/[’(z) N H, N H], N H, if n(z) # 1/2,

Vk e {2,... k*},

1 Lmn/(k=1)]

7 > 1[Viu () does not shattes”’ andV’ shatterss"|
i=1

<P(S € X" Vi, 4-()) does not shattef|V shattersS) + M, '/

< /4 M <y /a4 m(n) TR

For sufficiently larger, m(n) '3 < v/4. It k € {2,...,k*} andA®) (2, 14,) < 1 — ~, then

1 Lmn/(k—=1)]

i Z 1[V does not shatteﬁi(k) U {z} andV shatterss*i(k)] >,
koo =1

and thus, if this happens for sufficiently largen the even#*(z) N H,, N H], N H!/, we must

have
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S T® (@, —h (), Uy) =

Lmn /(k—1)]
> 1[Viz () does not shattes" andV shatterss;"]

i=1

1
<
S

<Y/2=—=v/2+7

Lma/(k=1)]
Z 1[V does not shattet" U {z} andV’ shatterss'*]
i=1

Lmn /(k—=1)]
Z 1{V(z b () dO€S not shattes*) andV’ shatterss"]

i=1

2
< — 7/+Mk

=—7v/24+ — YA
1 Lmn/(k—1)] o
STA ; 1[Vi 1 (2)) ShattersS!™ and Vi, ;- (.) does ndt
Lmn/(k—1)]
<— > 1[Vie 1) does not shattes" andV’ shatterss;

1=1

k)]

—=— N, h*(x),Us).
By a union bound over the elements&yf-,

() HE@) > 1 - nml/3(d + Deap{—2m(n)' /),

:L‘E,Ck*

which suffices to provd(4.8).

Also, we have the following.

P(Us, : P(x : H(z) does not occyr> exp{—m(n)'/?})
< exp{m(n)**}E[P(z : H"(x) does not occyt (by Markov’s inequality)
= exp{m(n)'*}YE[P(U, : H"(X) does not occyi (by Fubini's theorem)

< exp{m(n)*YE[(d + 1)exp{—2m(n)**}] = (d + 1)exp{—m(n)*/?}.
This suffices to provd(4.9). O

Proof of Theorerir413The result now follows directly from Lemm&s2117 dnd #.10.1(4.7) im-

plies|Ly| > L(n) for some function.(n) = w(n), while (£8)implies we will infer the labels
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for all but at most{n/(3 - 2*")| of them, and[{418) implies that, for sufficiently largethe in-
ferred labels are correct. Lemria4.10 implies that) is at most twice the error of any of
thed + 1 classifiers. These things happen on an event that only fails with probability at most
exp{—c - n'/x} for someDxy-dependent constant> 0, and a universal constagt> 0.

Defining L='(m) = min{n : L(n) > m}, we get that, for some distribution ovére
{L(n), L(n) + 1,...} (independent of the data),

Efer ()] < B2 [Edf2er (Ay(20)] +eapl—c-n'/%} < sup B loer(A,(2)] + eapf—e-n'}

Therefore,

- _ 1
Aa(3€, ny) S L_l(Ap(E, DXy)) -+ c X th —.

€
If AP(E,DXy) > 1, L_l(]\p(e, Dxy)) = O(Ap(e,ny)), SOAP(E, Dxy) ¢ Polylog(1/e¢) im-

plies the improvements claim, and otherwisge, Dxy ) € Polylog(1/e). ]

Proof of Theoreri414This follows identical reasoning to the proof of Theorlem 4.3, except that
instead of adding:zp{—c - n'/X} to the expected error, we simply take (2¢, 26, Dxy) =
max{L~'(A,(¢,d, Dxy)),c X In*(1/§)} to ensure the failure probability for the aforementioned
events is at most. ForA, (e, 0, Dxy) > 1 this is effectively not a restriction at all for small

and otherwise we still hav&, (¢, 26, Dxy) = O(1). O

Lemma 4.18. Let  be the classifier returned by Meta-Algorithm 6, when

2n
In(4n)+dIn =7

T>8 47 ,andDxy € BenignNoise(C). Then for anyn € N, there is some

€, = o(n~'/?) such that, on an everi’ C H, withP(H')) > P(H,) — §/2,

er(h) —v < &,.

Proof. For brevity, we introduce the notatid@, = {z : k¥'(x) > k}, where as beforé’(z) =

min{k’ : A®)(z,U,) < 1 —~}.

First note that, by Alexander’s results on uniform convergeince [Alex ,11984, Devroye et al.,
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1996], combined with a union bound, on an evéﬁj(tof probabilityl — 6 /2, everyh € C has

20484 1n(1024d) + In(32(d + 1)/9)
Qx|

Vk, ler(h|Qi) — erq, (h)| < \/

Define I, = H, N H”", and for the remainder of the proof we assume this event holds. In

particular, this implies every,, has

20484 In(1024d) + In(32(d + 1)/9)
| Qx|

er(hy| Q) < flllel(g er(h|Qg) + 2\/
Consider any: < k*. We have (by LemmaZ17)

er(hi) = P(Qy)er(h|Qy)
+P((z,y) s @ ¢ Qp andn(z) = 1/2 andhy(x) # y)
+P((z,y) : = ¢ Qy and(x) # 1/2 andhy(z) = h*(z) # y)
+P((x,y) : © ¢ Qi andn(x) # 1/2 andhy(x) # b (z) = y)

* 2048d 1n(1024d)+1In(32(d+1)/6
Q) (er(r]Qu) + 2/ TR

+ (1/2)P(x : x ¢ Qg andn(z) = 1/2)+

IN

11,,1/3

P((x,y) : x ¢ Qp andn(z) # 1/2andh*(z) #y) + (d+ 1)e "

* 2048d 1n(1024d)+1In(32(d+1)/6
P (er(r]Qu) + 2/ TR

1,,1/3

+er(h*| X\ Qp)P(X \ Qx) + (d+ 1)e™ "

) 4+ P(Q0)? \/2048d1n(1024d)+1n(32(d+1) /6) s

IN

IN

L2n/<3 . QR)J + (d + 1)6—0 n

Now there are two cases to consider. In the first case; k. In this case, we have
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er(ﬁ,;) — er(hg)

= P@e) (er(hglQe) — er(hie|Qe))

N 20484 In(1024d) + In(32(d + 1)/9)
P(@k*) (eer*( k) Q* (hk )_'_ 2\/ ‘Qk*‘ )

IA
>

20484 In(1024d) + In(32(d + 1)/0)
1Qy]

IN

P(Qx-)7

Therefore,

2048 In(1024d) + In(32(d + 1) /9)
[2n/(3 - 2)]

er(iz,%) —v< er(hy) —v+ P(Qk*ﬁ\/

20484 In(1024d) + In(32(d + 1)/5) /s
< P(Qk*)9\/ /(3 2] +(d+1)e
A (k%) 2048d1n(1024d) 4+ In(32(d + 1) /9) e—c”nl/S
= (”2)9\/ 20/ (3 20)] ey
X (k) 2048d In(1024d) + In(32(d + 1)/0) e—c”n1/3
< AU 9\/ /(3 2041), +(d+1) :

SinceAY") = o(1) (by definition in Lemm&Z17), this last quantitydg.—/2).

On the other hand, suppoke< k*. If P(Q;) = 0, then the aforementioned bound on excess

error implies the result. Otherwise, fbr= k + 1, 3j < k such that
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: \/ 2048d In(1024d) + In(32(d + 1) /)

IN

IN

IN

IN

[2n/(3-2%))

erq, () — erq, (i)

20484 In(1024d) + In(32(d + 1)/9)
Q]

P((z,y) : ilk(x) # yandn(r) # 1/2|Qx)P(Q.|Q;)
+P((z,y) : hi(w) # y andn(x) # 1/2 andz ¢ Q4 € Q;)

er(hi|Qy) — er(hy|Q;) + 2\/

—P((x,y) : B(x) #yandn(z) # 1/2|r € Q;) + 2\/2048d1n(1024d) +1n(32(d + 1)/6)
o ] Q]

P(Qx|Q)P((z,y) : hu(z) # y andn(z) # 1/2|Qy)
+P((2,y) : hy(z) # y andn(z) # 1/2 andz ¢ Qulz € Q)

2048 In(1024d) + In(32(d + 1)/4)

_P((:c,y):h*(fc)#yandn(fﬂ)#l/?‘xe(@j)w\/ Qs

P(Qx|Q;) (er(hy|Qx) — er(h*|Qx))
+P((z,y) : hi(x) # y andn(x) # 1/2 andz ¢ Qulz € Q;)
—P((z,y) : h*(z) # y andn(z) # 1/2 andx ¢ Qulr € Q)

Ly \/ 2048d In(1024d) + In(32(d + 1)/0)
20/(3-2))

2048 1n(1024d) + In(32(d + 1)/5)
IP“Q’C‘QJ')Q\/ [20/(3 2]

+ P(x : hy(z) # h*(z) andn(z) # 1/2 andz ¢ Q) /P(Q;)
Ly \/ 2048 In(1024d) + In(32(d + 1) /)

20/(3-2))]

. \/ 20484 In(1024d) + In(32(d + 1)/6)
[2n/(3 - 2%)]

+ (d+1)e """ /P(Qy)
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In particular, this implies

P(Q;) < (d+ 1)6‘0"”1/3\/ 12n/(3 - 2+1) |

2048d In(1024d) + In(32(d + 1) /8)

Therefore,

20484 1n(1024d) + 1n(32(d + 1) /9)
12n/(3 - 2%)]

—c'nl/3

er(hy) —v < IP(Q,;)2\/ +(d+1)e

11,,1/3

< (1+ \/5)(d+ e ™’ = o(n_l/Z).

O

Proof of Theorerfi418This result now follows directly from Lemmia4l18. That is, for suffi-
ciently largen (sayn > s, for somes € N), P(ﬁ[n) < §/2, so with probabilityl — ¢,
er(h) —v < &,. We can defin&’, = 1forn < s, and&, for n > s. Then we have for

all n, with probabilityl — 8, er(h) — v < &/, = o(n~"/2). Thus, the algorithm obtains a label

complexity
A(e+v,0,Dxy) <1+supnl[€] > €.
neN
Now define€” = &/ + 27" = o(n~1/2). Then
lim €*Ay (€ + v, 9, D < lim €*(1 + supnl[E! > ¢
AR ) S lme(L+supnlfE] > )
= lim € sup nl[El > ¢
N0 neNn>|logy(1/6)]
e 2
< lim €2 sup n( )

N0 peNn>llogy(1/)] €2

— lim sup n(€)’
N0 neNn>|logy(1/¢)]

2
= lim sup n(€”)? = (lim sup \/ESZ) =0.

n—oo n—oo

Therefore A, (e + v, 0, Dxy) = o(1/€%), as claimed. O
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Chapter 5

Beyond Label Requests: A General
Framework for Interactive Statistical

Learning

In this chapter, | describe a general framework in which a learning algorithm is tasked with learn-
ing some concept from a known class by interacting with a teacher via questions. Each question
has an arbitrary known cost associated with it, which the learner is required to pay in order to
have the question answered. Exploring the information-theoretic limits of this framework, | de-
fine a notion called theost complexityf learning, analogous to traditional notions of sample
complexity. | discuss this topic for the Exact Learning setting as well as PAC Learning with a
pool of unlabeled examples. In the former case, the learner is allowed &mggkiestion, while

in the latter case, all questions must concern the target concept’s behavior on a set of unlabeled
examples. In both settings, | derive upper and lower bounds on the cost complexity of learning,

based on a combinatorial quantity | call tBeneral Identification Cost
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5.1 Introduction

The ability to ask questions to a knowledgeable teacher can make learning easier. This fact is no
secret to any elementary school student. But how much easier? Some questions are more difficult
for the teacher to answer than others. How much inconvenience must even the most conscientious
learner cause to a teacher in order to learn a concept? This chapter explores these and related

guestions about the fundamental advantages and limitations of learning by interaction.

In machine learning research, it is becoming increasingly apparent that well-designed inter-
active learning algorithms can provide valuable improvements in learning performance while
reducing the amount of effort required of a human annotator. This research has mainly focused
on two formal settings of learning: Exact Learning by queries and pool-based Active PAC Learn-
ing. Informally, the objective in the setting of Exact Learning by queries is to perfectly identify
a target concept (classifier) by asking questions. In contrast, the pool-based Active PAC setting
is concerned only with approximating the concept with high probability with respect to an un-
known distribution on the set of possible instances. In this latter setting, the learning algorithm
is restricted to asking only questions that relate to the concept’s behavior on a particular set of

unannotated instances drawn independently from the unknown distribution.

In this chapter, | study both of these active learning settings under a broad definition. Specif-
ically, I consider a learning protocol in which the learner canaskguestion, but each possible
guestion has an associateukt For example, a query of the form “what is the label of example
x” might cost $1, while a query of the form “show me a positive example” might cost $10. The
objective is to learn the concept while minimizing the taa$tof queries made. One would like
to know how much cost even the most clever learner might be required to pay to learn a concept
from a particular concept space in the worst case. This can be viewed as a generalization of
notions ofsample complexitgr query complexityound in the learning theory literature. | refer
to this best worst case cost as tust complexityf learning. This quantity is defined without

reference to computational feasibility, focusing instead on the information-theoretic boundaries
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of this setting (in the limit of unbounded computation). Beld derive bounds on the cost com-
plexity of learning, as a function of the concept space and cost function, for both Exact Learning
from queries and pool-based Active PAC Learning.

Sectior2.P formally introduces the setting of Exact Learning from queries, describes some
related work, and defines cost complexity for that setting. It also serves to introduce the notation

and fundamental definitions used throughout this chapter. The section closely parallels the work

of Balcazar et al..[Balcazar etlal., 2001]. The primary contribution of SeEfidn 5.2 is a derivation

of upper and lower bounds on the cost complexity of Exact Learning from queries. This is
followed, in Sectiol 513, by a formal definition of pool-base Active PAC Learning and extension
of the notion of cost complexity to that setting. The primary contributions of Secfibn 5.3 include
a derivation of upper and lower bounds on the cost complexity of learning in that general setting,
as well as an interesting corollary for intersection-closed concept spaces. | know of no previous

work giving general results of this type.

5.2 Active Exact Learning

In this setting, there is amstance spac&” andconcept spac€ on X’ such that any, € C is

a distinct functionh : X — {0,1}|] Additionally, defineC* = {h : X — {0,1}}. That s,

C* is themost generatoncept space, containing all possible labeling&’ofin particular, any
concept spac€ is a subset of*. For a particular learning problem, there is an unknéarget
conceptf € C, and the task is to identify using a teacher’s answers to queries made by the
learning algorithm. Formally, aactual queryis any function inQ = {G : C* — 24"\ {2}}

for someanswer seid*. By a learning algorithm “making an actual query”, | mean that it selects

LAll of the main results easily generalize to multiclass as well.
2The restriction thag(f) # {} is a bit like an assumption that every valid question has at least one answer for

any target concept. However, we can always define some particular answer to mean “there is no answer,” so this

restriction is really more of a notational convenience than an assumption.
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a functiong € @, passes it to the teacher, and the teacher returns a singleera < q(f)
where f is the target concept. A concepte C* is consistenwith an answer to an actual
queryq if a € ¢(h). Thus, | assume the teacher always returns an answer that the target concept
is consistent with; however, when there are multiple such answers, the teacher may arbitrarily

select from amongst them.

Traditionally, the subject of active learning has been studied with respect to specific restricted
guery types, such as membership queries, and the learning algorithm’s objective has been to
minimize thenumberof queries used to learn. However, it is often the case that learning with
these simple types of queries is difficult, but if the learning algorithm is allowed just sfewial
gueries, learning becomes significantly easier. The reason we are initially reluctant to allow the
learner to ask certain types of queries is that these queries are difficult, expensive, or sometimes
impossible to answer. However, we can incorporate this difficulty level into the framework by
assigning each query type a specdast and then allowing the learning algorithm to explicitly
optimize thecostneeded to learn, rather than themberof queries. In addition to allowing the
algorithm to trade off between different types of queries, this also gives us the added flexibility to
specify different costs within the same family (e.g., perhaps some membership queries are more

expensive than others).

Formally, in this framework there is eost function Let o« > 0 be a constant. A cost
functionis anyc : Q — (cr, 0]. In practice ¢ would typically be defined by the user responsible
for answering the queries, and could be based on the time, resources, or operating expenses
necessary to obtain the answer. Note that if a particular type of query is unanswerable for a
particular application, or if the user wishes to work with a reduced set of possible queries, one
can always define the costs of those undesirable query typesdo, Is® that any reasonable

learning algorithm ignores them if possible.

While the notion ofactual queryclosely corresponds to the actual mechanism of querying in

practice, it will be more convenient to work with the information-theoretic implications of these
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queries. Define the set effective querie®@ = {¢q : C* — 22% \{2}Vf € C*a € q(f) =
[f € aAYh € a,a € q(h)]}. Each effective query corresponds to an equivalence class of actual
gueries, defined by mapping any answer to the set of concepts consistent with it. We can thus
define the mapping

E(q) ={dlq € Q,¥f € C*,[3a € g(f) witha = {h|h € C*.a € §(h)}] & a € q(f)}.
By an algorithm “making an effective quegy’ | mean that it makes an actual querydry)H (a
good algorithm will pick a cheaper actual query). For the purpose of this best-worst-case
analysis, the following definition is appropriate. For a cost functiatefine a corresponding
effective cost functiofoverloading notationy : Q — [«a, oo], such that
Vq € Q,c(q) = infgeg(q) c(¢). The following definitions illustrate how query types can be

defined using effective queries.

A positive example quelig anyq € £(qs) for someS C X, such thays € Q is defined by
VieC st[Tres: f(x)=1],qs(f) = {{hlh € C* h(x) =1}z € S : f(x) =1}, and
VfeC st Ve e S, f(x) =0],qs5(f) = {{h|h € C* : Vx € S, h(z) = 0}}.

A membership queng anyq € £(qq,}) for somex € X'. This special case of a positive
example query can equivalently be definedifyc C*, i,y (f) = {{h|h € C*, h(z) = f(x)}}.
These effectively correspond to asking for any example labeledbloinan indication that there
are none (positive example query), and asking for the label of a particular exaniple in
(membership query). | will refer to these two query types in subsequent examples, but the
reader should keep in mind that the theorems below appjl types of queries.

Additionally, it will be useful to have a notion of affective oraclewhich is an unknown
function defining how the teacher will answer the various queries. Formally, an effective oracle
T is any function in7 = {T: Q — 2%"|Vq € Q,T(q) € Usec-q(f)}1 For convenience, | also

3l assumeA* is sufficiently expressive so thely € Q, £(q) # @; alternatively, we could defing(q) = o =
¢(q) = oo without sacrificing the main theorems. Additionally, | will assume that it is possible to find an actual

query in&(q) with cost arbitrarily close tonfc¢ (4 c(¢) for anyq € Q using finite computation.
4An effective oracle corresponds to a deterministic stateless teacher, which gives up as little information as
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overload this notation, defining for a set of queries. Q, T'(R) = Nyer1'(q).

Definition 5.1. A learning algorithmA for C using cost functiom is any algorithm which, for
any (unknown) target concejite C, by a finite number of finite cost actual queries, is
guaranteed to reduce the set of concept€iconsistent with the answers to preciséfy}. A
concept spac€ is learnablewith cost functiort using total cost if there exists a learning

algorithm forC usingc guaranteed to have the sum of costs of the queries it makes at.most

Definition 5.2. For any instance spac&’, concept spac€ on X', and cost functiom, define

the cost complexitydenoted CostComplexity, c), as the infimum > 0 such thatC is

_}earnable with cost function using total cost no greater tham

iEquivaIentIy, we can define cost complexity using the following recurrend€:| K= 1,
CostComplexityC, c¢) = 0. Otherwise,

CostComplexitfC, c¢) = inf ¢(¢) + max )CostCompIexit(y{h|h e€eC,aeqh)},c)

GeqQ feCaeq(f

Since

inf ¢(¢) + max )COStCompIeXit&{h|h €eC,aeqh)},c)

GeQ feCacq(f

= inf inf ¢(§) + max f CostComplexityC N {h|h € C*,;a € G(h)},c)

q€Q Ge&(q) feC,aeq(

= inf ¢(q) + max CostComplexityC Na,c),
qeQ (Q) feC,aeq(f) P t@C )

we can equivalently define cost complexity in termefiéctive querieandeffective costThat
is, CostComplexityC, c) is the infimum¢ > 0 such that there is an algorithm guaranteed to
identify any f € C usingeffectivequeries with total okffectivecosts no greater than

possible. It is also possible to analyze a setting in which asking two queries from the same equivalence class, or
asking the same question twice, can possibly lead to two different answers. However, the worst case in both settings

is identical, so the worst case results obtained for this setting also apply to the more general case.
5| have made the dependence/bbn the teacher implicit. To be formally correet,should have the teacher’s

effective oraclel” as input, and is guaranteed to outguor anyT € 7 s.t. Vg € Q, T(q) € q(f). Costis then a

book-keeping device recording hotvusesI” during execution.
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5.2.1 Related Work

There have been a relatively large number of contributions to the study of Exact Learning from
queries. In particular, much interest has been given to settings in which the learning algorithm is
restricted to a few specific types of queries (e.g. membership queries and equivalence queries).

However, these contributions focus entirely on tiuenberof queries needed, rather theost

The most relevant work in this area is by Balcazar, Castro, and Guijarro [Balcazat et &l., 2001].

Prior to publication ofl[Balcazar and Cas 02], there were a variety of publications in
which the learning algorithm could use some specific set of queries, and which derived bounds

on the number of queries any algorithm might be required to make in the worst case in order to

learn. For example, [Hellerstein e J96] analyzed the combination of membership and

proper equivalence queries, [Hegedis, 1995] additionally analyzed learning from membership

| —

gueries alone, while [Balcazar ef al 99] considered learning from just proper equivalence

qgueries. Amidst these various special case analyses, somewhat surprisingly, Balcazar et al.
[B.a.LQé\za.La.n.d_C.aSJr 2002] discovered that the query complexity bounds derived in these

works were all special cases of a single general theorem, applying to the broad class of

sample-based querie$hey further generalized this result In [Balcazar et al., 2001], giving

results that apply to any combinationarfy query types. That work defines an abstract
combinatorial quantity, which they call tii@eneral Dimensioywhich provides a lower bound

on the query complexity, and is within a log factor of it. Furthermore, the General Dimension
can actually be computed for a variety of interesting combinations of query types. Until now
there has not been any analysis | know of that considers learningiiilery types, but giving
each query a cost, and bounding the worst-castthat a learning algorithm might be required

to incur. In particular, the analysis of the next subsection can be viewed as a generalization of

[Balcazar et all, 2001] to add this notion of cost, such Jha_]_[_B_a_LQaza ot all, 2001] represents the

special case of cost that is uniformly 1 on a particular set of queriescaad all other queries.
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5.2.2 Cost Complexity Bounds

| now turn to the subject of exploring the fundamental limits of interactive Iearnini in terms of

cost. This discussion closely parallels that of Balcazar, Castro, and Guij

azar et al.,

001].

Definition 5.3. For any instance spac&’, concept spac€ on X', and cost functiom, define

the General Identification Costlenoted>1C/(C, ¢), as follows.

GIC(C,c) = inf{t|t > 0,¥T € T,3R C Q,s.t[} pc(q) <t A[[CNT(R)| < 1]}

We can also express this@9 C(C, ¢) = supycr inf peojcnrr)<i quR ¢(q). Note that
calculating this corresponds to a much simpler optimization problem than calculating the cost

complexity. The General Identification Cost is a direct generalization of the General Dimension

of [Balcazar et &ll, 2001], which itself generalizes quantities such as Extended Teaching

Dimension [Hegediis, 1995], Strong Consistency Dimen ).LO.D.[.B.B.LQ&ZJI‘ et al., 1999], and the

Certificate Sizes ot [Hellerstein etlal., 1996]. It can be interpreted as a sort of game. This game

is similar to the usual setting, except that the teacher’'s answers are not restricted to be consistent
with a concept. Imagine there is a helpful spy who knows precisely how the teacher will

respond to every query. The spy is able to suggest queries to the learner, and wishes to cause the
learner to pay as little as possible. If the spy is sufficiently clever at suggesting queries, and the
learner follows every suggestion by the spy, then after asking some minimal cost set of queries
the learner can narrow the set of concept€iconsistent with the answers down to at most one.

The General Identification Cost is precisely the worst case limiting cost the learner might be

forced to pay during this process, no matter how clever the spy is at suggesting queries.

Lemma 5.4. For any instance spac#, concept spac€ on X, and cost functiom, if V' C C,

thenGIC(V,c) < GIC(C,¢).

Proof. It clearly holds ifGIC(C, ¢) = co. If GIC(C, ¢) < k,thenVT € T,3R C Q s.t.
> gercl@) <kandl > |CNT(R)| > [V NT(R)|, and thereforé&1C(V,c) < k. The limitas
k — GIC(C,c) gives the result. ]
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Lemma 5.5. For any~ > 0, instance spacé’, finite concept spac€ on X" with |C| > 1, and
cost functiorn: such thatGIC(C, ¢) < 0o, d¢ € Q such thatvT € T,

ICl -1

C\TW)] 2 o) g o 7o

That is, regardless of which answer the teacher picks, there are atdég 1@'%:11) — concepts

in C inconsistent with the answer.

Proof. Supposevq € Q, 37, € 7 such thalC \ T,(q)| < c(q) g7t~ Then define an
effective oraclel” with the property thatq € O, 7'(¢) = T,(q). We have thus defined an oracle

suchthat/kR C Q, %" ., c(q) < GIC(C,c) +v =

ICNT(R)| =|C| = |C\T(R)| = |C| = )_|C\T,(q)l

qgeER
ICl -1 ICl -1
C| - > |C| - (GIC(C =
> 6= 30 e g7y 2 101~ (C10C ) Vapae g s
In particular, this contradicts the definition 67 C(C, ¢). O

This brings us to the main theorem of this section.

Theorem 5.6. For any instance spac#&’, concept spac€ on X', and cost functior,

GIC(C,c) < CostComplexityC, c) < GIC(C, ¢) log, |C|

Proof. | begin with the lower bound. Lét < GIC(C, ¢). By definition of GIC, 3T € T, such
thatvR C Q, > rclq) < k= |CNT(R)| > 1. In particular, this implies that an adversarial
teacher can answer any sequence of queries with cost no greatérithanvay that leaves at
least 2 concepts it consistent with the answers, either of which could be the target coricept
This impliesCostComplexityC, ¢) > k. The limitask — GIC(C, ¢) gives the bound.

Next | prove the upper bound. F/C(C, ¢) = oo or |C| = oo, the bound holds vacuously, so

let us assume these are finite. Say the teacher’s answers correspond to some effective oracle
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T € 7. Consider a recursive algorithi, that makes effective queries fro@H If |C| =1,
thenA,, halts and outputs the single remaining concept. Otherwise betan effective query
having the property guaranteed by Lenima 5.5. Tha€is, 7'(¢)| > c(q)%. Defining

V =CnNT(q) (a generalized notion ofersion spack this implies that

c(q) < (GIC(C,c)+7) ‘%T_‘Y' and|V| < |C|. SayA. makes effective query, and then
recurses of. In particular, we can immediately see that this algorithm identjfiasing no

more tharC| — 1 queries.
| now prove by induction ofiC| thatCostComplexityC, ¢) < (GIC(C, ¢) + v)H|c|-1, Where

H, =Y, % isthen™ harmonic number. IfC| = 1, then the cost complexity i& For

IC| > 1,

CostComplexit§C, c)

<c(q) + CostComplexitil/, c)

Cl| -1V
<(GIC(C.)+9) T + (G100 +

<(GIC(C,c)+7) (|C| — |V

- 4+ Hyvi_
c—1 v )

S(GIC((C, C) -+ ’7)H|(c|_1

where the second inequality uses the inductive hypothesis along with the propedties of
guaranteed by Lemnia®.5, and the third inequality uses Lemiha 5.4. Finally, noting that

Hic|-1 < log, |C| and taking the limit ag — 0 proves the theorem. O

One interesting implication of this proof is that the greetfypoathm that choosegto maximize

1%11171 % has a cost complexity within g, |C| factor of optimal.
S

6] use the definition of cost complexity in terms of effective cost, so that we need not concern ourselves with
how A, chooses itactual queries However, we could defind ., to make actual queries with cost withinof the

effective query cost, so that the result still holdsyas: 0.
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5.2.3 An Example: Discrete Intervals

As a simple example of cost complexity, consider {1,2,..., N}, for N > 4,

C=A{hgp: X = {0,1}a,be X,a < bV e X, [a <z <b<s hy(x) = 1]}, and define an
effective cost function that is1 for membership querieg,, for anyxz € X, k for the positive
example queryy where3 < k < N — 1, andoo for any other queries. In this case,

GIC(C,c) = k+ 1. In the spy game, say the teacher answers effective queries with an effective
oracleT. Let X, = {z|r € X, T(qqsy) = {h|h € C*, h(x) = 1}}. If X # @, then let

a = min X, andb = max A,. The spy tells the learner to make queres, g}, ¢ra—1y (if

a > 1), andgp41y (if b < N). This narrows the version space{th, ; }, at a worst-case effective
costof 4. If ¥, = o, then the spy suggests query. If T'(qx) = {f_}, the “all 0” concept,

then no concepts i@ are consistent. Otherwis&|(qy) = {h|h € C*, h(x) = 1} for some

r € X, and the spy suggests membership query. In this case/ (q(,3) N T'(gx) = @, So the
worst-case cost i + 1 (without gy, it would costV — 1). These are the only cases to consider,
soGIC(C,c) = k + 1. By Theoreni b, this implies

k 4+ 1 <CostComplexit§C, c) <2(k + 1) log, N.

We can slightly improve this by noting that we only useonce. Specifically, if a learning
algorithm begins (in the regular setting) by asking revealing thaff () = 1 for somez € X,
then we can reduce to two disjoint learning problems, with concept spaces

Cl ={huplb € {z,...,N}},andC,, = {h,.|la € {1,2,...,x}}, with cost functions

c1(q) = c(q) for ¢ € {4}, Ggut1y, - - -, vy } @ndoo otherwise, and,(q) = ¢(q) for

q € {apy, ¢g2y, - - -, qg2y } @ndoo otherwise, and correspondidgy C(Cy, c) < 2,

GIC(Ci,c) < 2. So we can say that

CostComplexitfC, ¢) < k + CostComplexityC’, ¢;) + CostComplexit§C, c2) < k + 4log, N.
One algorithm that achieves this begins by making the positive example query, and then

performs binary search above and below the indicated positive example to find the boundaries.
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5.3 Pool-Based Active PAC Learning

In many scenarios, a more realistic definition of learning is that supplied by the Probably
Approximately Correct (PAC) model. In this case, unlike the previous section, we are interested
only in discovering with high probability a function with behavior veiynilar to the target

concept on examples sampled from some distribution. Formally, as above there is an instance
spaceX, and a concept spa¢éeC C* on X'; unlike above, there is also a distributidhover X'.

As with Exact Learning, the learning algorithm interacts with a teacher by making queries.
However, in this setting the learning algorithm is given as input a finite secHAeﬁuelabeled
exampleg/, each drawn independently accordingpandall queriesmade by the algorithm

must concern only the behavior of the target concept on examplég-ormally, a

data-dependent cost functiemany functior: : Q x 2% — («a, oo]. For a given set of unlabeled
exampleg/, and data-dependent cost functigrlefinec,(-) = ¢(-,U). Thus,c, is a cost

function in the sense of the previous section. For a giygrhe corresponding effective cost

functionc, : Q@ — [a, o] is defined as in the previous section.

Definition 5.7. Let X’ be an instance space€, a concept space oft, andlf = (1,2, ..., Ty))

afinite sequence of unlabeled examples. Deéftne C, h(U) = (h(x1), h(z2), . .., h(zw))).

DefineC[i/] C C as any concept space such thate C, [{1'|h € CU], ' (U) = h(U)}| = 1.

71 willimplicitly overload all notation for sets and sequences, so that if a set is used where a sequence is required,
then an arbitrary ordering of the set is implied (though this ordering should be used consistently), and if a sequence

is used where a set is required, then the set of distinct elements of the sequence is implied.
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Definition 5.8. A sample-based cost functiagmany data-dependent cost functioauch that
for all finiteld C X', Vq € Q,

cu(q) <oo=VfeC"Vaecq(f),YheChU)=fU)=hecal.
This corresponds to queries that aboutthe target concept’s labels on some subsét of

Additionally,vi/ C X,z € X, andq € Q, ¢(q,U U{x}) < ¢(q,U). Thatis, in addition to the

above property, adding extra examples to whjishanswers do not refer does not increase its

cost.

For example, membership queriesor U and positive examples queries 8riC U could

have finite costs under a sample-based cost function. As in the previous section, there is a target

conceptf € C, but unlike that section, we do not try identify f, but instead attempt to

approximatdt with high probability.

Definition 5.9. For instance space’, concept spac€ on X, distributionD on X, target

conceptf € C, and conceph € C, define theerror rateof , denotecrrorp(h, f), as

errorp(h, f) = Prx.p {h(X) # f(X)}

Definition 5.10. For (¢, ) € (0,1)?, an (e, §)-learning algorithnfor C using sample-based cc

for any target concepf € C and finite sequend#, A(U/) outputs a concept it after making
a finite number of actual queries with finite costs undgerAdditionally, any(e, ¢)-learning
algorithmA has the property thaim € [0, co) such that, for any target concejte C and
distributionD on &,

Pry~pm {errorp(AU), f) > €} < 4.

A concept spac€ is (e, §)-learnablegiven sample-based cost functionsing total cost if
there exists afe, ¢)-learning algorithmA for C usingc such that for all finite example

sequenced, A(U) is guaranteed to have the sum of costs of the queries it makes at most

st

functionc is any algorithmA taking as input a finite sequence of unlabeled examples, such that

undercy,.

134



Definition 5.11. For any instance spac&, concept spac€ on X, sample-based cost function

¢, and(e, §) € (0,1)?, define thee, §)-cost complexitydenoted CostComplexity, ¢, ¢, §), as

the infimum > 0 such thatC is (¢, §)-learnable giverr using total cost no greater than

As in the previous section, because it is limeiting case, we can equivalently define the
(¢, 6)-cost complexity as the infimum> 0 such that there is afz, §)-learning algorithm
guaranteed to have the sumedfectivecosts of theeffectivequeries it makes at most
The main results from this section include a new combinatorial quadiityC' (C, ¢, m, 7)
such that ifd is the VC-dimension of’, then

GPIC(C,c,©(1),8) < CostComplexityC, c,e,5) < GPIC(C, ¢, © (2),0)0(d).

€

5.3.1 Related Work

Previous work on pool-based active learning in the PAC model has been restricted almost
exclusively to uniform-cost membership queries on examples in the unlabel#¢d Beére has

been some recent progress on query complexity bounds for that restricted setting. Specifically,

Dasguptal[Dasgupta, 2004] analyzes a greedy active learning scheme and derives bounds for the

number of membership querieslifit uses under aaverage cassetting, in which the target

concept is selected randomly from a known distribution. A similar type of analysis was

previously given by Freund et al. [Freund et al., 1997] to prove positive results for the Query by

Committee algorithm. In a subsequent paper, Dasgupta [Dasgupta, 2005] derives upper and

lower bounds on the number of membership queriés required for active learning for any
particular distributiorD, under the assumption thatis known. The results | derive in this
section implyworst-caseesults (over bottD and f) for this as a special case of more general

bounds applying tanysample-based cost function.

5.3.2 Cost Complexity Upper Bounds

| now derive bounds on the cost complexity of pool-based Active PAC Learning.
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Definition 5.12. For an instance spac&’, concept spac€ on X, sample-based cost function
and nonnegative integen, define theGeneral Identification Cost Growth Functiatenoted
GIC(C,¢c,m), as follows.

GIC(C,¢,m) = sup GIC(C[U], cy)

uexm

Definition 5.13. For any instance spac&, concept spac€ on X, and(e, §) € (0,1)?, let
M(C, e, 9) denote thesample complexityf C (in the classigassive learningense), or the
smallestn such that there is an algorithrd taking as input a set of examplésand labels, and

outputting a classifie(without making any queriesyuch that for anyD and f € C,

Prewpaderyorp(A(L, f(L)), f) > €} < 0.
It is known (e.g.,[Anthony and Bartleit, 1999]) that

max{&t, LIn1} < M(C,e,6) < “Inl242n2

for0 < e <1/8,0 < ¢ < .01, andd > 2, whered is the VC-dimension of°. Furthermore,
Warmuth has conjectured_Ma.Lle‘.h_ZDM] thatC, €, 0) = O(1(d + log 1)).

With these definitions in mind, we have the following novel theorem.

Theorem 5.14.For any instance spac&’, concept spac€ on X’ with VC-dimension

d € (0, 00), sample-based cost functione € (0,1), andé € (0, 1), if m = M(C,¢,6), then

CostComplexityC, c, €, §) < GIC(C, ¢, m)dlog, <

Proof. For the unlabeled sequence, santglee D™. If GIC(C, ¢, m) = oo, then the upper

bound holds vacuously, so let us assume this is finite. Als0(0, o) implies|U| € (0, c0)

[Anthony and Bartlett, 1999]. By definition af/ (C, ¢, §), there exists a (passive learning)

algorithmA such that/f € C, VD, Pry..pm{errorp(AU, f(U)), f) > e} <. Therefore any
algorithm that, by a finite sequence of effective queries with finite cost updédentifiesf (/)
and then outputgl (U4, f(U)), is an(e, 0)-learning algorithm forC usingc.

Suppose now that there igghost teacherwho knows the teacher’s target concé¢pt C. The

ghost teacher uses thec C[U/] with h(U/) = f(U) as its target concept. In order to answer any
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actual querieg € Q with ¢,,(§) < oo, the ghost teacher simply passes the query to the real
teacher and then answers the query using the real teacher’s answer. This answer is guaranteed to
be valid because, is a sample-based cost function. Thus, identifyfity) can be
accomplished by identifying(/), which can be accomplished by identifyihg The task of
identifying h can be reduced to dfxact Learningask with concept spadg|l/] and cost
function¢y,, where the teacher for the Exact Learning task is the ghost teacher. Therefore, by
Theoreni 2, the total cost required to identffy/) with a finite sequence of queries is no
greater than
Ule

CostComplexitiC ], c) < GIC(CIU], ) log, |CIU)| < GIC(CU), cu)dlogy ==, (5.1)

where the last inequality is due to Sauer’s Lemma (e.g., [Anthony and Bartlett, 1999]). Finally,

taking the worst case (supremum) overZéle X' completes the proof. ]

Note that[5.11) also implies a data-dependent bound, whigldgmtentially be useful for
practical applications in which the unlabeled examples are available when bounding the cost. It

can also be used to state a distribution-dependent bound.

5.3.3 An Example: Intersection-Closed Concept Spaces

As an example application, we can use the above theorem to prove new results for any

intersection-closed concept spgae follows.

8An intersection-closed concept spatéhas the property that for ary,, ho € C, there is a concepts € C
such that'z € X, [hy(z) = he(z) = 1 < hs(z) = 1]. For example, conjunctions and axis-aligned rectangles are

intersection-closed.
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Lemma 5.15. For any instance spac#, intersection-closed concept spaCevith
VC-dimensionl > 1, sample-based cost functiersuch that membership querieslithave
cost< pu (i.e., YU C X, x € U, cu(qrzy) < i) and positive example queriestihhave cosK «

(i.e., YU C X, S CU,cy(gs) < k), and integem > 0,

GIC(C,e,m) < k+ pd

Proof. Say we have some set of unlabeled exampleand consider bounding the value of
GIC(ClU], cyy). In the spy game, suppose the teacher is answering with effective @raclé.
Leti, = {z|r € U,T(qy) = {h|h € C*,h(x) = 1}}. The spy first tells the learner to make
theqnu, query (ift/ \ U # @). If 3z c U\ U, S.t.T(qru, ) = {h|h € C*, h(z) = 1}, then
the spy tells the learner to make effective quegry for this z, and there are no concepts in
C[U] consistent with the answers to these two queries; the total effective cost for this case is
k + p. If this is not the case, byt/, | = 0, then there is at most one conceptfi{/| consistent
with the answer t@y.\;,, : namely, theh € C[i/] with h(z) = 0 for all x € U, if there is such an
h. In this case, the cost is just

Otherwise, letS be a largest subset df, such thatih € C withVz € S, h(z) = 1. If S = &,
then making any membership querylia leaves all concepts i[l/] inconsistent (at cost),

so let us assumé +# @. For anyS C X, define
CLOS(S) ={z|x € X,Vh € C,[Vy € S,h(y) = 1] = h(z) =1}

theclosureof S. Let S’ be a smallest subset Sfsuch thatC' LOS(S") = CLOS(S), known as
aminimal spanning setf S [Helmbold et al., 1990]. The spy now tells the learner to make
queriesy,; forall z € 5.

Any concept inC consistent with the answer tg.,,, must label every € U \ U, as 0. Any
concept inC consistent with the answers to the membership querie¥ arust label every

r € CLOS(S") = CLOS(S) 2 S as 1. Additionally, every concept ifi that labels every

r € S as1mustlabel every € I, \ S as 0, since is defined to be maximal. This labeling of
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these three sets completely defines a labelirid,@nd as such there is at most dne C|U/]
consistent with the answers to all queries made by the learner. Helmbold, Sloan, and Warmuth
[Helmbold et al., 1990] proved that, for an intersection-closed concept space with
VC-dimensiond, for any setS, all minimal spanning sets ¢f have size at most. This implies

the learner makes at masmembership queries i, and thus has a total cost of at most

K =+ pd. ]

Corollary 5.16. Under the conditions of LemniaBl154if> 10, then for0 < e < 1, and
0<6<3,

CostComplexityC, c, €,9) < (k + ud)dlog, (2 max {g Ind, g In %8 })

Proof. This follows from Theoreri5.14, Lemnia’l15, and Auer & Ortner’s result

[Auer and Ortner, 2004] that for intersection-closed concept spaceslwitlh0,

M(C,e,é)gmax{%dlnd,%ln%s}. O

For example, consider the concept space of axis-parall@rngetangles it = R”,

C={h:X —{0,1}|3((a1,b1), (ag,b2),...,(an,b,)) : Ve € R*" h(z) =1 < Vi€

{1,2,...,n},a; < z; < b;}. One can show that this is an intersection-closed concept space
with VC-dimensior2n. For a sample-based cost functioof the form stated in Lemnfa&lL5,

we have thaCostComplexit§C, ¢, ¢,) < O ((k + nu)n). Unlike the example in the previous
section, if all other query types have infinite cost, thervfor 2 there are distributions that

force any algorithm achieving this bound for sma#indé to use multiple positive example
queriesgs with |S| > 1. In particular, for finite constant, this is an exponential improvement
over the cost complexity of PAC active learning with only uniform cost membership queries on

U.
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5.3.4 A Cost Complexity Lower Bound

At first glance, it might seem that/C/(C, ¢, [1=<|) could be a lower bound on

CostComplexitfC, c, €, 0). In fact, one can show this is true for< (%Qd. However, there are
simple examples for which this is not a lower bound for geneeadd d We therefore require a

slight modification ofG/C to introduce dependence én

Definition 5.17. For an instance spacé’, finite concept spac€ on X, cost functior, and
d € [0, 1), define theGeneral Partial Identification Costenoted=P1C(C, ¢, §) as follows.

GPIC(C,¢,6) = inf{t|t > 0,YT € T,3R C Q, s.t.[, . p¢(q) < IAICNT(R)| < 8|C|+1]}

Definition 5.18. For an instance spacg’, concept spac€ on X', sample-based cost function
¢, non-negative integen, andé € [0, 1), define theGeneral Partial Identification Cost Growth
Function denoted>PIC(C, ¢, m, ), as follows.

GPIC(C,¢,m,0) = sup GPIC(CU],cy,?)

Uuexm

It is easy to see tha&t/C'(C,c) = GPIC(C,¢,0) andGIC(C, ¢, m) = GPIC(C, ¢, m,0), SO

that all of the above results could be stated in termS B C.
Theorem 5.19.For any instance spac&, concept spac€ on X', sample-based cost function

¢, (6,0) € (0,1)?, and anyV C C,

GPIC(V, ¢, [=<],6) < CostComplexityC, c, ¢, §)

Proof. LetS C X be a setwith. < |S| < [1=¢], and letDy be the uniform distribution o1.

Thus,errorpg(h, f) < e < h(S) = f(S). | will show that any algorithnd guaranteeing
Pru~pp{errorps(AU), f) > e} < § cannot also guarantee cost strictly less than
GPIC(V[S],cg,0). If 5|V[S]| > |V[S]| — 1, the result is clear since no algorithm guarantees
cost less than 0, so assud|&’[S]| < |V[S]| — 1. Supposed is an algorithm that guarantees,

9The infamous “Monty Hall” problem is an interesting example of this. For another example, coasiger
{1,2,...,N},C = {h,|z € X,Vy € X, h,(y) = I[x = y|}, and cost that is 1 for membership queriegfimnd
infinite for other queries. Although’/C(C,c, N) = N — 1, it is possible to achieve better than= NLH with

probability close tof=2 using cost no greater tha — 2.
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for every finite sequendd of elements fromS, A(U) incurs total cost strictly less than
GPIC(V[S], cs,0) undere, (and therefore also undeg). By definition of GPIC, T eT
such that for any set of querigsthat.A (/) makes|V[S] N T(R)| > 6|V [S]| + 1. | now
proceed by the probabilistic method. Say the teacher draws the target cgnoefarmly at
random fromV/[S], andvq € Q s.t. f € T(q), answers with'(¢). Any ¢ € Q such that

f ¢ T(q) can be answered with an arbitrarys ¢(f). Let hy, = A(U); let R, denote the set of

queriesA (i) would make ifall queries were answered wiih

E¢[Pry~pm{errorps(AU), f) > €}]

=Ey~pn [Pri{hu(S) # f(S)}]

> By [Pri{hu(S) # f(S) A f € T(Ry)}]

o VISINT (R -1

SC N

Therefore, there exists a deterministic method for selegtiagd answering queries such that
Pru~pz{errorps(AU), f) > €} > 4. In particular, this proves that there are (apj)-learning
algorithms that guarantee cost strictly less than/ C' (V' [S], cg, 0). Taking the supremum over

setsS completes the proof. O

Corollary 5.20. Under the conditions of Theordm 519,

GPIC(C, ¢, =] ,0) < CostComplexityC, c, €, 5).
Equipped with Theoreln 5119, it is straightforward to prove ¢kaim made in Sectidn 5.3.3 that

there are distributions forcing any, ¢)-learning algorithm for Axis-parallel rectangles using

only membership queries (at costto pay(“=2). The details are left as an exercise.

5.4 Discussion and Open Problems

Note that the usual “query counting” analysis done for Active Learning is a special case of cost
complexity (uniform cost 1 on the allowed queries, infinite cost on the others). In particular,

Theorenf5IM can easily be specialized to give a worst-case bound on the query complexity for
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the widely studied setting in which the learner can makera@gnbership queriesn examples

in U [Dasguptal, 2005]. However, for this special case, one can derive a slightly tighter bound.

Following the proof technique of Hegedilns.[.l:l_eg_v s, 1995], one can show that for any

sample-based cost functiersuch that/t/ C X, q € Q,

cu(q) < 00 = [aulg) = 1 AV € C*, |g(f)| = 1], CostComplexityC, cy) < 25 (o ee 5l

This implies for the PAC setting th&ostComplexit§C, ¢, ¢, §) < 2Gfoii%§’&)gf§§§)m, for
VC-dimensiond > 3 andm = M (C, ¢, ¢). This includes the cost function assigning 1 to

membership queries @ andoc to all others.

Active Learning in the PAC model is closely related to the topi§emi-Supervised Learning

Balcan & Blum LB.a.Isa.n_a.n.d_BLqu_ZQDS] have recently derived a variety of sample complexity

bounds for Semi-Supervised Learning. Many of the techniques can be transfered to the

pool-based Active Learning setting in a fairly natural way. Specifically, suppose there is a
guantitative notion of “compatibility” between a concept and a distribution, which can be
estimated from a finite unlabeled sample. If we know the target concept is highly compatible
with the data distribution, we can draw enough unlabeled examples to estimate compatibility,
then identify and discard those concepts that are probably highly incompatible. The set of
highly compatible concepts may be significantly less expressive, therefore retotirige

number of examples for which an algorithm must learn the labels to guarantee generalization
andthe number of labelings of those examples the algorithm must distinguish between, thereby

also reducing the cost complexity.

There are a variety of interesting extensions of this framework worth pursuing. Perhaps the

most natural direction is to move into the agnostic PAC framework, which has thus far been

quite elusive for active learning except for a few results [Balcanlet al.)| 2006, Kaariainen, 2005].
Another possibility is to derive cost complexity bounds when the ¢@st function of not only
the query, but also the target concept. Then every time the learning algorithm makes g, query

itis charged:(q, f), but does not necessarily know what this value is. However, it can always
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upper bound the total cost so far by the worst case over canoefite version space. Can
anything interesting be said about this setting (or variants), perhaps under some benign
smoothness constraints efy, -)? This is of some practical importance since, for example, it is

often more difficult to label examples that occur near a decision boundary.
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